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PREFACE

This report was primarily written by V. Seetharama Rao and

represents the work done by him for a Ph.D. dissertation at

Texas ASM University under the direction of Dr. C. 3. Garriso:.

With the increasing interest in construction offshore of

large structures such as oil storage tanks, there is an urgent need

for information about wave forces, moments, etc. on such structur=s.

It is hoped that this rcport will serve as a beginning in our

understanding of the basic problem of interaction of surface gravity

waves with large submerged objects.



ABSTRACT

This report presents the practical and rigorous solution of

the potential flow problem associated with the interaction of a

train of regular surface gravity waves with a fixed rigid submerged

half spheroid resting on the bottom.

The linearized boundary-value problem is first formulated for

a fixed semiellipsoid. The radiation problem of a rigid semi-

ellipsoid oscillating in its various degrees of freedom, one degree

at a time, in otherwise still water is also formulated simulta-

neously, so as to use its results to check the results of the first

problem by Haskind's relations. In each case the solution is

obtained by the Green's function approach. In this method the

velocity potential is obtained by distributing "unit wave sources"

over the surface of the object. The Green's function which re-

presents the velocity potential for a unit wave source is chosen

such that it satisfies all the conditions of the problem except

the normal boundary condition on the surface of the object. When

this condition is applied, the result is a Fredholm integral

equation of the second kind which must be solved for the distribu-

tion function. In the numerical procedure the integral equation is

replaced by a matrix equation which is solved on a digital computer.

The numerical procedure is outlined in detail for the semiellipsoid

and finally, numerical results are obtained for a half spheroid ~



The numerical results obtained include amplitudes and phase

shifts of the dynamic pressures, horizontal and vertical force and

moment coeffj.cients and the phase shifts nf the forces and moment.

The results are complete in the sense that they include all the

data necessary for practical engineering design. Several checks

are made on the numerical results. These in< lude the Haskind's

relations check, an energy check for the radiation problem, and

comparisons pith an asymptotic solution and experimental results

for a hemisphere. All these checks and comparisons are successful

and it appears that the numerical method employed yields valid

and accurate results.
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l. INTRODUCTION

Recent years have witnessed the emergence of two significant

trends which may well mark an important turn in human history.

On one hand, the population qf the earth has expanded beyond all

previous estimates placing ever increasing demands on the natural

resources available to man. Yet, on the other hand, since the

resources available on land are limited, they continue to

dwindle. Therefore, it is but natural that caught between these

opposing trends man should turn ta the oceans  especially their

coastal waters! far a solution to his dilemma. The exploitation

af the natural resources of the coastal waters requires, among

other things, the design and construction of large scale struc-

tures offshore. This in turn necessitates a better understanding

of the interaction of surface gravity waves with structures such

as large submerged oil storage tanks. It is the aim of this

dissertation to contribute towards such an understanding by tak-

ing a basic approach to the problem af wave interaction with

submerged objects. Nore specifically, the problem of interaction

of a train of plane regular waves with a rigid fixed submerged

semiellipsoid will be studied by potential flaw theory and

numerical results obtained for a half spheroid. Although the



shape considered is somewhat idealized, it is representative of

practical shapes and the results provide some insight and under-

s tan din g into the fundamental p rob lem.

Before going into the details of the particular problem of

this dissertation, we shall first consider briefly the various

aspects of the general problem of wave forces on submerged objects.

Such a review will provide a perspective on how the present prob-

lem fits into the overall picture. Next we shall review briefly

the theory and the available literature on wave/structure inter-

act ion.

A Review of the General Problem of Wave Forces on Submerged Objects

Wave forces acting on such objects as piles, submerged pipe�

lines, and small spheres have been studied extensively over the

last two decades. Significant contributors include Morison,

et al. �950!*, Beckmann and Thibodeaux �962!, and Grace and

Casciano �969!, to name only a few. In all these studies, the

size of the object is small relative to the 1ength of the inci-

dent wave. This condition occurs in many practical situations.

It simplifies the general problem of wave/structure interaction.

by allowing one to assume that the object does not disturb the

incident wave in anv way. As far as the forces on the obj ect are

References are arranged alphabetically by author at the end
of the dissertation,



concerned, one can assume that the flow field existing at the

center of the object at any instant due to the incident wave ex-

tends to infinity. Further, the wave force acting on the object

can be considered to be the sum of two components, drag and

inertia. The drag force is proportional to the product of a drag

coefficient, C, and the square of the fluid velocity. The in-

ertia force is proportional to the product of an inertia coef-

ficient, � + C !, where C is the added mass coefficient, and
m m

the local acceleration of the fluid ~ Normally the empirical coef-

ficients, C and C, have to be found by practical testing.

Norison, et al. �950! first applied an expression of the above

type to the wave forces on piles. Hence, it is commonly known

as the '"Aorison equation."

As the size of the object increases relative to the length of

the incident wave, two ef fects take place. Firstly the incident

wave is scattered due to the presence of the object. Secondly,

since the object is not deeply submerged, there is an effect due

to the proximity of the free surface. This is the situation that

occurs in the case of structures such as submerged oil storage

tanks, whose dimensions may be of the order of the wave length and

water depth. Both the effects mentioned are commonly known as

"diffraction effects," However, it is often convenient for pur-

poses of discussion to classify them as the relative size effect

and the relative depth effect  or the free surface effect!,



respectively. In view of these effects, the simplifying assump-

tions on which the Norison equation is based are no longer valid.

Hence the Norison equation must be replaced in this range by an

altogether different approach. Such a theory which accounts for

the relative size of the object and the free surface effect is

commonly known as "diffraction theory." In this approach separa-

tion and viscous effects are neglected and the problem is set un

in terms of a velocity potential and the velocity potential which

satisfies the necessary conditions is sought. Once it is found,

the dynamic pressure distribution on the surface of the object

is determined by Bernoulli's equation and the forces and moments

are obtained from the pressure distribution by surface integra-

t ion,

At this stage it is imperative to know under what conditions

separation and viscous effects bqcome negligible and diffraction

theory can be expected to yield results that are practically

valid. Viscous effects are accounted for in the Norison equation

by the drag force term. They are mainly dependent on the ratio

of the displacement of fluid particles near the object to the size

of the object. For small values of the relative displacement,

the flow near the object remains attached and viscous effects can

be neglected. For example, for the case of a fluid starting from

rest and flowing with constant acceleration past a circular

cylinder, the results of Sarpkaya and Garrison �963! have shown



that at the beginning of motion, the added mass and drag coef-

f icients are equal to the inviscid flow values of unity and zero

respectively. In the case of wave/structure interaction, if

linear wave theory is assumed, then for a given wavelength and

water depth, the relative displacement of fluid particles is

linearly proportional to H/2a, where H is the height of the in-

cident wave and a is a characteristic length of the object. In

the case of large structures, such as oil storage tanks, the

parameter H/2a is usually small so that viscous ef fects can be

neglected and potential flow theory yields valid results. This

is an advantage from the theoretical point of view. On the other

hand, for small objects such as piles, H/2a is generally large

and viscous effects become quite significant.

Tn the preceding discussion. on the general problem of wave/

structure interaction, we have identified three dimensionless

parameters as being relevant. There is first of all the relative

size parameter, a/L, where L is the length of the incident wave.

For convenience from the theoretical point of view, it is pref-

erable to choose 2~a/L instead of a/L to represent the relative

size. This parameter is significant with respect to the region

of validity of the Morison type equation. Secondly, there is the

relative depth parameter, h/a, where h is the water depth. This

parameter reflects the free surface effect and decides the value

of C to be used in the Morison equation. Thus for small
m



relative depths, the value of C is greater than that for infinite

depth of fluid. Finally viscous effects are represented by the

relative displacement parameter, H/2a. Following Garrison,

Seetharama Rao and Snider �970!, the general features of the

wave/structure interaction problem can be qualitatively shown,

for a given h/a, on a diagram such as figure 1. For small values

of 2~a/L and all values of H/2a, the %orison equation is valid

and dif fraction effects due to relative size are negligible. On

the other hand for small values of H/2a and the entire range of

2~a/L, viscous effects are negligible and diffraction theory is

generally applicable. There is a region of overlap between the

two approaches when both 2ma/L and H/2a are small. In this

region, C in the Morison equation tends to zero and C ap-

proaches its potential flow value which depends on the shape of

the object and the relative depth, h/a.

Having considered the broad features of the wave/structure

interaction problem in general, we shall hereafter confine our

remarks to the region where diffraction theory is applicable.

Thus it shall be assumed in the following discussion that the

height of the incident wave is small relative to the size of the

obj ect so that viscous ef f ects can be neglected. This is true

for most large structures. At this point it must be mentioned

thatwhile much work, especially of an experimental nature, has

been done so far on submerged objects in the range of small values



Figure l. Regions of applicability
 after Garrisan, Seetharoma Rao
and Snider  l970! ! .



of 2~a/L, little has been accomplished in the range of higher

values of the same parameter where the Morison equation becomes

invalid and a dif fraction theory must be employed. Part of the

reason for the paucity of experimental data is that in this range

testing has to be done in three-dimensional wave tanks and is both

difficult and expensive. The experimental data collected, if any,

appear ta be proprietory and so have not appeared in the literature.

This points to the need for theoretical work in this area.

A Review of the Theoretical Approach and Literature on the Problem

of Wave/Structure Interaction

A review of the available literature on the application of

potential flow methods to the problem of wave/structure inter-

action reveals that there are almost no publications devoted to

the problem of wave forces on objects submerged in water of finite

depth and resting on the bottom. One well-known exception is the

case of vertical cylindrical piles for which NacCamy and Fuchs

�9S4! have developed a diffraction theory the results of which

reduce to those given by the inertia term in the Norison equation,

for the limiting case of 2ma/L ~ 0. On the other hand, much

theoretical work has been done on the problem of objects located

at the free surface in water of infinite depth, primarily because

of interest in the motion of ships and breakwaters. Because the

theoretical approach and many of the techniques of the latter



problem are directly applicable to the former problem, we shall

review the literature available on objects located at the free

surface.

There are two types of problems generally dealt with by

potential flow methods;. On one hand, there is the problem of a

train of incident waves acting on a fixed rigid object. This

is commonly known as the "diffraction problem." The main results

of. interest here are the forces and moments, and in the case of

two-dimensional problems the reflection and transmission coef-

ficients. The problem of this dissertation falls under this

category. On the other hand, there is the problem of a rigid

object executing forced harmonic oscillations of small amplitude,

in otherwise still water, in its various degrees of freedom.

This is commonly called the "radiation problem." The parameters

of Interest here are the added mass and added moment af inertia

coefficients, and the damping coefficients, Por the two-dimensional

problem, the ratio of the wave amplitude at infinity to the am-

plitude of displacement of the object, known as the "wave-height

ratio", is also of interest. The diffraction and radiation

problems, while often studied independently, are still related as

we shall see presently. Moreover, for many practical cases such

as ship motiops, floating breakwaters etc., the two problems

have to be worked together in conjunction with the equations of

mbt ion
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Theoretical a roaches. As far as the theory for the wave/

structure interaction problem is concerned, there are two basic

approaches. John �949, 1950! showed that the velocity potential

for the problem can be obtained by a suitable distribution of

unit wave sources over the surface of the object. The potential

for the unit sources, which is also called the "Green's function"

for the problem, must satisfy all the conditions of the problem

except the normal boundary condition on the surface of the object.

When the latter condition is applied, an integral equation is

obtained the solution of which specifies the manner in which the

unit sources are to be distributed. In general the equations

sre quite complex and therefore it is difficult to obtain solu-

tions in a closed form, so that numerical methods must be used

In an alternate approach, Ursell �949a,b! obtained the velocitv

potential for the radiation problem for a circular cylinder by

combining a series of wave potentials with undetermined coeff icients

and a potential with a multivalued singularity at the origin.

The wave potentials have to satisfy certain conditions of the

problem. They are superposed to satisfy the normal velocity condi-

tion on the surface of the object. This gives an infinite number

of equations in an infinite number of unknown coefficients. For

numerical calculations, only a finite number of wave potentials

are chosen. The equations are salved by relaxation techniques to

obtain the coefficients for the wave potentials. The source at



the origin is required in this scheme to satisfy the conditions

at infinity. With this method Ursell treated the problem of a

heaving and rolling semisubmerged ci.rcular cylinder at the free

surface in water of infinite depth.

Two-dimensiona~lrob lems. We shall now review briefly the

literature on two-dimensional problems. Dean and Ursell �959!

considered the Interaction of a train of regular waves with a

fixed semi-immersed circular cylinder at the free surface in in-

finite depth of fluid from theoretical as well as experimental

point of view. They obtained reflection and transmission coef-

ficients, and horizontal and vertical force coefficients. Their

work complements Ursell's earlier work on the radiation problem.

Yu and Ursell �961! extended Ursell's work on the heaving

circular cylinder to the case of finite depth of fluid. They

also presented experimental results for this case. Their

theoretical results compare favorably with the experimental data.

Porter �960! extended Ursell's method to elliptic and other

rather general two-dimensional shapes. Kim �965! applied the

Green 's func tion approach to the p roblem of an elliptic cylinder

oscillating at the free surface in infinite depth of water and

obtained numerical results for the physical quantities of interest,

ree-dimensional roblems. As for three-dimensional pro-

blems, Havelock  l955! treated the problem of a sphere floating

half-immersed in water and describing heaving oscillations. Using
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a method similar to Urse11's, he obtained approximate results for

the added mass and damping coefficients. Nacagno and Landweber

�958!, and Landweber and Nacagno �960! considered the problem

of a rigid spheroid oscillating in a free surface and obtained

results for the added mass coefficients for horizontal and verti-

cal oscillations, respectively. Barakat �962! studied the pro-

blem of heave of a freely floating sphere under the action af

regular incident waves. He solved the radiation and diffraction

problems separately using Ursell's approa h. The added mass and

damping coefficients and the wave-height ratio in the former

problem and the force on the fixed sphere in t' he latter problem

were obtained. The results were combined via the equations of

motion to solve the complete problem of a freely floating sphere

in waves

In a work that is of greater interest to the present study,

Kim �964a! formulated the complete problem of an oscillating

ship, in the form of a half-ellipsoid, in waves and presented a

method of solving it by the Green's function approach. Later,

Kim �964b, 1965! solved the radiation problem of an oscillating

ship at the free surface in otherwise still water. The three-

dimensional problem of an ellipsoid was considered. The ship was

assumed to oscillate in all possible degrees of freedom. The

depth of fluid was assumed infinite. Numerical results were ob-

tained for the added mass and added moment of inertia and damping



l3

coefficients. They were compared with results from previous in-

vestigators. Monacella �966! considered the problem of a slender

ship free to oscillate on the surface of a fluid of finite dep th

and sub jected to oblique waves. Only the asymptotic approximation

to the velocity potential valid in the "far field" was considered

and used to compute the hydrodynamic pressure on the bottom of

the fluid for the case of a ship in the form of a spheroid.

At this juncture one important point needs to be stressed.

As mentioned previously, there are definite relations between the

diffraction and the radiation problems. These are commonly known

as "Haskind's relations." According to Newman �962!, in 1957

Haskind related the forces and moments on a fixed body due to a

given incident wave to the asymptotic velocity potential valid at

large distances from the body for the corresponding radiation

problem. Thus the vertical force on a fixed object is related to

the potential at an infinite distance for the same object heaving

in otherwise still water, and so on. In 1962 Newman applied

these relations to calculate wave forces on a submerged ellipsoid

and a floating elliptic cylinder. Moreover, he showed that in

the case of the radiation problem, because of conservation of

energy, the damping coefficients can be related to the velocity

potentials at infinity. Hence Newman related the wave forces in

the diffraction problem for the ellipsoid to the damping coef-

ficients in the corresponding radiation problem. In the case of
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the elliptic cylinder, he related the wave forces to the wave-

h ei ght ratios ins t cad.

Statement of the Dissertation Problem

The. problem under investigation in the present dissertation

may be considered now. It is obvious, from the brief literature

survey, that not much work has been done so far on the problem

of wave forces on large objects completely submerged in water of

finite depth and resting on the bottom, which is the case of

primary interest to coastal and ocean engineers. In view of the

apparent and pressing need for information about wave forces on

such structures as submerged oil tanks, the research reported in

this dissertation has been undertaken. Nore specifically the

d i f f rac t ion pr ob lem of a f ixe d rigid s ub me r ge d s ernie 1 lips o i d rest-

ing on the bot tom and acted on by a train of regular waves is

considered. Besides the assumption that the semiellipsoid is

always completely submerged, there are two basic limiting assump-

tions to the theory. Firstly, the parameter H/2a, where a is the

semiaxis of the ellipsoid in the direction of advance of the in-

cident waves, is considered small so that viscous effects may be

n e glee t ed . S econ dly, th e wave he i gh t H is ass umed s ma 11 i n com-

parison to the wave length L and the fluid depth h, so that

linearized wave theory can be employed. The scatter velocity

potential is obtained by a distribution of unit wave sources on



the surface of the ellipsoid. On applying the normal boundary

condition on the surface of the object, a Fredholm integral equa-

tion of the second kind is obtained. Its solution, by numerical

methods, indicates the manner in which the sources are to be

distributed. To reduce the computer time required, the problem

is restricted to the case of a spheroid. Both oblate and prolate

spheroids are considered. The problem considered here is quite

similar to the one dealt with by Kim �965! and in a sense com-

plements it, since Kim considered only the radiation problem and

the case of infinite depth whereas the diffraction problem and

the case of finite depth are considered here. The Green's func-

tion used in this dissertation is the same one used by Nonacella

as a starting point, though he was able to simplify it con-

siderably because of his assumptions. Some of the analytical

and numerical techniques of both these investigators are borrowed

freely in the present work, ~here required.

The radiation problem for the case of a submerged spheroid

does not involve much work beyond the dif fraction problem con-

sidered here, since t he only difference between the two is in the

normal boundary condition on the spheroid. The Green's function

is the same. Yet the radiation problem is not studied in detail

in the present work, since not much use is foreseen for it by way

cf practical applications. However, the problem is set up and

solved and its results are used in the Haskind's relations in a
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few cases as a check on the results obtained for the diffraction

problem. Some other checks, including comparison with experimental

results, are made to assure the validity of the results given

here. All of these checks are successful and on the basis of this,

it appears that the results are valid at least over the range of

parameters tes ted.

The work described in this dissertation is of a basic theoret-

ical nature. So no attempt will be made to list all possible areas

of application. As already mentioned, one application which

motivated this research is in connection with large oil storage

tanks currently being built near offshore drilling sites. The

present work may be useful for design of underwater habitats also.



2. FORMULATION OF THE PROBLEM

Tn this section the radiation and diffraction problems are

formulated simultaneously, using a common notation. Thus es-

sentially seven dif ferent problems are dealt with, simultaneouslv.

These correspond respectively to the fluid motion produced by an

object oscillating in its six degrees of freedom, one degree at

a time, and the scattering of incident waves due to a fixed object.

Figure 2, Schematic far the problem,

Consider a rigid semiellipsoid submerged in an inviscid, in-

compressible liquid of finite depth h and resting on the bottom,

as shown in figure 2. Let a rectangular Cartesian coordinate
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For. convenience another coordinate scheme 0'x'y'z' is also chosen

such that its origin is at the center 0' of the semiellipsoid

and its axes are respectively parallel to those of the first

scheme, as shown in figure 2.

lf the body now executes linear or angular oscillations of

small amplitude with an angular frequency, o=2rr/T about its un-

disturbed oosition, where T is the period of the oscillations,

then the surface disturbances created by the motion travel out-

ward as waves in all directions. The motion of the rigid object

oscillating in its six degrees of freedom may be described by

X.  t! PQ.[X. e ], j =1,2, 3  a!
j j

�. 2!and

0 0
where X. and 6. denote the amplitudes of the linear and angular

j

displacements, respectively, and %'C. denotes the real part of a

scheme Oxyz be chosen such that the  x, z!-plane coincides with the

undisturbed free surface. The surface S of the semiellipsoid

with center  O,-h,0! and semiaxes of length a, c and b is given



in the x, y and z directions and are called "surge", "heave" and

"sway", respectively. Similarly 8, 9 and 6 represent angular

oscillations about the x', y' and z' axes and are called "roll",

"yaw" and "pitch", respectively. In all cases, the linear dis-

placements of the object due to its oscillations are assumed

small compared to its linear dimensions, so that the resulting

waves may be assumed to be of small amplitude, and separation and

viscous effects may be neglected.

Assuming the fluid motion to be irrotational and harmonic

with the frequency o when the transient motion disappears, a

velocity potential 4. may be introduced to describe the motion.
j

is defined such that its gradient gives the fluid velocity.

Let

C. x,y,z;t! = RQ. V, x,y,z! e ]
j j

� 3!

where V. is a complex function of space only. Then because the

fluid is incompressible, 4. must satisfy the Laplace equation.
j

That is,

V 0  x,y,z;t! - 0

in the region R outside the body and between the free surface and

the bottom, y = -h.

complex expression. Here Xl, X2 and X3 denote linear oscillations



Let us now consider the diffraction problem. Assuming the

body to be fixed in its undisturbed position, consider a train of

-0
regular progressive waves of relatively small amplitude n and of

frequency a  wave length L! coming from x = -~ and advancing in

the +x direction. Let the free surface elevation of these in-

cident waves, above the mean water level, be given by

-o i kx-ot!
 x,z;t! = t'e,fn e ]

w
�.5!

where n is assumed to be real and k 2m/L. Note that the height,

0
H, of the incident waves is equal to twice the amplitude n

Once the transients due to interaction between the wave and

the object have disappeared, we shall assume that the resultant

fluid motion is irrotational and harmonic everywhere wi.th the

frequency, a. Moreover, since the amplitude of the incident wave

system is small, the amplitude of the resulting wave system may

also be assumed to be small compared to L and h so that linearized

theory can be employed in what follows. Hence the velocity

potential 4>' associated with wave interaction with the fixed

object may be written as

�.6!<PO +

where 4 represents the velocity potential of the incident wave in

the absence of t' he body, and C, which is called the "scatter
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that for 0,, j=l,2,3,...,6, they will be formulated simultaneouslv

hereafter by using the notation ]~7 to correspond to the scatter

problem. In view of �. 3!, �.4! may now be rewritten as

V V  x,y,z! = 0 in the region R . j=l,2,3,...,7 �. 7!

The various boundarv conditions that have to be satisfied

by «, j 1,2,3,...,7, will be considered next. At the free sur-

face, 0 has to satisfy two boundarv conditions. The first of

these, which is a dynamic condition, is obtained by linearizing

the unsteady form of Bernoulli's equation. It may be written as

potential", arises due to the presence of the body. The potential

is already known from linear wave theory. Therefore hereafter

the pxoblem is formulated in terms of the unknown scatter potential

«» rather than the total potential «'.

Since the total potential « ' must satis fy the Laplace equa-

tion and « is already a solution of the same, «must now satisfy

the Laplace equation. Therefoxe the subscript j in �. 3! and

�.4! may be considered to range from 1 through 7, the first six

values representing the various degrees of freedom, and 7 denoting

scatter. Since the problem for « is mathematically similar to
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where Ti. represents the elevation, above the mean water level, of
j

the surface disturbance resulting from the oscillation of the body

or scatter, and g denotes the acceleration due to gravity; The

second boundary condition, which is a kinematic condition, re-

~piire.-. that part i;.l~ s on the fre< surface must aiways remain

t here. After li.aearization, it may be written in the form

B C'.

~ x,0,z;t! = � -~ x,z:t!
By

Conditions �.8! and �.9! may be combined into one to yield the

complete free surface boundary condition

BV 2

~ x,0,z! � � V,  x,0,z!. = 0
By

However, using the well-known relation

2
0
� = k tanh kh
g

from linear wave theory, equation �.10! may be rewritten as

BV.

~ x,O,z! � k tanh  kh! V  x,O,z! = 0
By

On the rigid impermeable bottom, y=-h, C. must satisfy the

kinematic boundary condition that the velocity normal to the

bottom be zero. Therefore



av.

~ x,-h,z! = 0
dy

�. 13!

In addition, 4. must satisfy the kinematic boundary condition
j

an the sur face of the body. For the oscillating body, this re-

quires that the fluid velocity normal to the surface must equal

the velocity of the surface normal to itself. Because of linear-

ization, this condition is satisfied on the undisturbed position,

S x,y,z!, of the surface. Therefore

av

~ x,v,z! = h.  x,y,z! on S x,y,z!, j~1,2,3, ~ .,6
~n

�.14!

where n is a coordinate normal to S, as shown in figure 2, and

h = � io X n , h = -ia X n , h -ia X n

h = -ia 8 [ y+h!n � zn ], h -ia 8 [zn -xn ],
4 4 z y ' 5 5 x

�.15!

= -io O [xn �  y~!n ]
6 6 y x

vatian of the functions h. is shown in Appendix A.
3

Here n, n and n denote the components of the outward unit normal
x' y z

n to the surface S at any point  x,y,z! on the surface. The deri-
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3C

� �  x,y,z! on S x,y,z!
8n

7  x,y, z!
dn

�.16!

From linear wave theory, the velocity potential for the incident

wave, 0 , is given by

h k  h+ ! i  kx-at!
e ]

cosh kh

o
c = Re['

0
�.17!

In a manner analogous to the representation �. 3!, we may define

a function V corresponding to the incident wave such that

v  x,y, z!
~in cosh k  ~+y! ikx

e

cosh kh
�.1S!

Therefore �.16! may be rewri tten as

ov 0--�
� �. x,y,z!

dn

av

 x,y,z!
3n

~k CQB~hk  h+ !
cosh Rh

in ] e on S.
cosh kh

�.19!

For the diffraction problem, the kinematic boundary condition

on the surface S requires that the fluid velocity normal to the

surface must be hiero, or d4'/Rn=0. In view of �.6!, this condi-

tion may be written in terms of the scatter potential 4 as



Finally, the disturbances caused by the oscillations of the

object or the scattering of the incident wave must produce only

outgoing orogressive waves at a large distance from the object.

In other words, 4. must, at an infinite horizontal dist'ance from
j

the ori.gin, approach trie velocity notentia1 for such waves. This

restriction on the asvmptotic behaviour of 4 . is known as the

"radiation condit>on." In terms of V it mav be written as
.!

V.  r,6,y! � C. �! r ' cosh k h+v! ikr
i e -~0 as r~~

cosh kh
�. 20!

-2 -2 1/2
where r and ; are polar coordinates given bv r =  x +z ! and

-1
0 = tan  z/x! and C, is some unknown comp1ex function of 0.

j
1/2

given r and 0, the factor C. �! r is proportional to the

 i! 2rra/L, which indicates the effect of the relative

size of the ellir~soid,

amplitude of the waves.

Equations �.7!, �.12!, �.13!, �.1~i! or �.19! and �.20!

together constitute the boundary-value problem for V.. However,
j

it is rrrore convenient to rewrite the problem in terms of dimension-

less variables and to solve it in terms of dimensionless parameters,

since the results will then be universallv valid. As indicated

in the "TNTPODUCTION", the sotut ion to the problem depends on the

followi.ng dimension1ess parameters r
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 ii! h/a, which is related to the proximitv of the free sur-

face, and

 iii!,  iv! b/a and c/a, which establish the geometry of the

ellipsoid.

h = h/a, b ~ b/a, c c/a,x=x/a,y=y/a,z=z/a,

x' = x'/a, r = r/a, n = n/a, �. 21!

X = X /a, j = 1,2,3 , etc.
0 -o

n = n /a,

For convenience, the following notation will also be used

hereafter:

X' = e' , j=c,S,6. �.22!

The surface S x,y,z! of the ellipsoid is now given by

x +
2   +h!

2 2
+ � = l.

c
�. 23!

We shall next define dimensionless potentials u. as follows:
j

Tn order to show clearly the dependence of the solution on the

various parameters, we shall define a = ka=2ma/L and make the rest

of the space variables and amplitudes dimensionless, using a.

That is, let



2 I'

au, x,v,z! io V  x,y,z! gaga X. tanh kh!, ]=1,2,3...,,6,
1 j j

oau7 x,y,z! = i<' ~!  x,y,z!/ga 0 �. 24!

The reason. for the narti cu1ar form of dc f init ions chosen are

�! the normalized t roblems for u. all appear similar. and the

normal velocity condit inn on 5 is simplified, and �! t»e dimen-

sionless dynamic pressure is linearly proportional to u. in each
1

case.

By using the definitions given above and the conditions

previously mentioned for V., the boundary-value problem corres-
j

terms of' u.. Thus the dimensionless potential u.  x,y,z!,
j

j=1,2,3,...,7, continuous in the fluid region I' is sought such

that

2
 A! 7 u  x,v,z! ~ 0 in region "

4U.

 B! --~ x,0,z! - a tanh ah! u  x,0,z! = 0
3y

rl u

 C! ~ x,-h,z! ~ 0 outside S x,y,z!
<y

�.25!

ponding to the i'luid motion arising irom small harmonic oscilla-

tions of the rigid submerged hodv in its six degrees of freedom,

as well as the scattering of a train of regular. small amplitude

waves due to the fixed object can now he written concisely in
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du.

 D! ~ x,y,z! = h.  x,y,z! on S x,y,z!

-1/2 cosh a h+v! iar
 F.! u,  r, t3,y! � A.  8! r e ~0 as r~

cosh ah

where S x.y,z! represents the immersed surface of the ellipsoid

in its undisturbed position and A, is an unknown dimensionless
j

t ion which depends on the mode of oscillation for ]=1,2,3,...,6,

and on the incident wave for j=7.

from �.15! and �.19! as

The functions h. are obtained
j

hl � n, h2 = n, h3 = n, h~ =  y+h!n - zn

h = zn � xn, h = xn �  y+h!n
5 x z 6 y " x �.26!

l. ax
e

h = tn sinh a h+y! + in cosh a h+v! ]
7 cosh ah v x

It is apparent that the seven oroblems described by �.25!

are identical except for the functions h.. This makes it very
j

convenient to solve them simultaneously. The remainder of this

dissertation is primarily devoted to the solution of �.25! .

complex function of 0. Here h  x,y,z! denotes a prescribed func-
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3. FORMULATION OF THE SOLUTION IN TERMS

OF THE GREEN ' S FUN CT ION

The solution to the boundary-value problem �.25! can be

obtained in terms of a Green's function. In physical terms, this

approach consists of distributing a number of three-dimensional

"wave sources" on the surface of the ellipsoid. The wave sources

are chosen so as to satisfy all the conditions of the problem

except the condition  D! on the surface of the ellipsoid. The

strengths of these sources are finally adjusted so as to sat isfv

the condition  D!. The potential for one such wave source of

unit strength is called the "Green's function" for the problem.

Me proceed by use of Green's reciprocal theorem, applied to

the region R, as shown in figure 3. The region P. is bounded by

the free surface, S, the bottom, S, the cylindrical surface,

S  the axis of the cylinder coinciding with the y-axis and the

radius r ~ ~!, and the surface of the ellipsoid, 5.

Figure 3. Region of application of Green's theorem.
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Let u,  x,y,z! and the Green's function G x,y,z; ,rl,r! be
j

chosen as subjects of Green's reciprocal theorem. Here  x,y,z!

is any general point in the fluid region, including the boundar-

ies, and  ~,q,<! is a particular point in the interior of the

region, where a unit wave source is located. G x,y,z; E,n,k;! is

the velocity potential at the point  x,y,z! due to the unit source

at   ,n, C! . From Green 's theorem

J u  x,y,z! 0 G x,y,z;E,n,t! � G x,y,z;  ,n,g! V u  x,y,z!2 2

dx dy dz = u. x,y,z! � , x,y,z;g,n,Q!
AG

S +S+S +S j Bn
f b

BU

- G x,y,z;g,n,g! ~ x,v,z! dS . �. 1!

Here the Green's function, G, is yet unknown. n' is tbe unit

normal to any of the. surfaces, outward from the fluid region.

n' is used to denote a coordinate in the same direction. Since

u. satisfies the Laplace equation throughout the region R, the
3

second part of the integral on the left band side of �.1! van-

ishes and, moreover, if G x,y,z;g,q,g! is chosen such as to satisfv

~ G ,y,; ,n,r! = ~  -~! < y-n! <  -0!
2

�. 2!

~here 8 is the Dirac. delta function, the left hand side of �.1!

reduces to u.  E,,tl,l!-
j
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Next we shall consider the integral on the right hand side

of �.1! for each segment of the boundary surface. First we may

write

�, 3!

En view of �.25-8!, the integral on the ripht vanishes provided

G is chosen to satisfy the free surface condition, i.e.

AG  x,O, z; g n,g! � a tanh ah! G x,O, z; g, n,<! = 0 �.4!

secondly, in view of �.25-G!,

�.5!

provided G satisfies the bottom boundary condition, i.e.

� 6!

Thirdly,

G~ dh = u � ', � iaG

�. 7!

u. -;- �; � <' -~ dS

f f

AU,
� a tanh  ah! u. 1 dS

L An' .3 3

u � �, - G~ dS =0
b

AG AG
�., - x,-h, z; ~,q, e! = �  x,-h, z;  ,q, ! = 0'I >we 7

Au.
GI ~-- ia u, I dg

n' ]g

f AGu. [ �, � a tanh ah! G.iL A"
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By means of the radiation condition, �. 25 E!, it can be shown

that

3U.
~ � ia. =OonS
3n' j CD �. 8!

Therefore if ". is required to satisfy the condition

dG
iaG=Oon S

9n'

the integral on the right hand side of �.7! vanishes. Thus we

obtain finally the result

u.  ,rl,<! = u. x,y,z! � , G x,y,z;g,rl,g! dS
3

~ ~ ~
3

". x y z F,.n <!, u  x.y,z! dg �. 10!

u,  x,y,z! = u.  <,n,<!, G x,y,z;  ,n,Z! dg
j s j >n

G ~
a

G  x, y, z; 6, n, r.!,- u   6, n. <! dS �. 11!

Interchanging the roles of  x,y,z! and  E,n,g!  that is, now

let  x,y,z! be a point in the region and  g,n,<! be a point on the

surface S, where a source is located!, and requiring that the

function ". be symmetric in  x,y,z! and   ,rl,g!, we can rewrite

�. 10! as
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!Jow C and some other function ~i', x,y,z! are chosen such that
t

to the surfaceS and the bottom, and ".ti',/~' and 'JC/ iy vanish on
3

Apqliinp <':reen's theorem once again, we havethe bottom, .- = --h.

f aut
u � - dS

�

S
ir n, r n

S

�. 12!

where n is the coordinate normal to the surface S, as defined

previously. 11ote that 3/An =-8/0n'. lienee �.l2! may be re-

written as

I

0 = u.', dS ~ C~dS �.13!

Subtractini., �.13! frown �.11! gives

0u 3U

u  x,y,z! =  u,-u.'! , dS - t C I -~ + ~ de �.14!j j 3n' f L  in 3n
S S

If now it is requi.red in addition that the arbitrary function u,'

be such that u'~u on the surface S, we have

3u du

 .y,z! =,I -~-~ 0ds �.15!

K!efining a function f such that

both of' them . atisfy the Lap]ace equation i n the region ",' interior
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Bu. BU.
f.�,n,<! = -4 I ~~�, r.,n,t:! + ~~� g,n.q!

<3n �. 16!

we can rewrite �.15! as

u.  x,y,z! = � � f.  g,n, 1;! G x,v,z; g,n',q! dS
.s ]

�.17!

u. shown in �.17!, a number of conditions were imposed on G. 

These may be summarized to give a boundary-value problem for G

as shown below:

 ~! ~ G ,y,z;<,n,<! = 5 x- ! 6 y-n! d z-q!
2

 B! �  x,O,z; g,n,g! � a tanh ah! G x,0,z; g,q.<! 0
30

 C! �  x,-h,z;g,q, ! = 0
gr,

�. 18!

This is the representation desired. It is unique. It indicates

that the velocit.. notential u may be obtained in terms of wave

sources located at points  F.,q,q! of the surface S. Here f. is
j

called the "distribution function", since i.t indicates the manner

in which unit wave sources are to be distributed over the surface.

It is a continuous complex function which has to Pe determined.

The next logical step in the solution is to determine the

Green's function, Q. In order to obtain the representation for
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Condition  D! may also be written in the following form:

cosh ah

iar
cosh a q-!h! e, as

where B is some unknown complex constant.

The radiation condition  D! or  D'! in the boundary-value

problem for G makes the Green's function, which satisfies �.18!,

unique.

On comparing �. 25! with �. 11! and �. l8!, it is apparent

that the boundary-value problem for u is in effect exchanged for

two separate problems, namely, a boundary-value problem for the

Green's function and a problem of finding the unknown distribution

funct ion f . which satisfies �.17! . The reason for this approach

is as follows. Since the Green's function does not have to sat-

isfy the normal boundarv condition on the surface S, it is easier

to find than u. Once G is obtained, the distribution function,

f., may be determined by using the normal boundary condition,
3

�.25-D! for u..

Normally the Green's function is obtained from the boundary-

value problem for G by means of Fourier and Laplace transform

techniques. In the present case, however, the Green's function

which satisfies �.18! is given in a dimensional Form by Mehausen
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and Laitane �960! and, when. made dimensionless in our variables,

appears as given below  refer figure 4!:

1 1 -wh
G x,y,z; ,n,<! = � + � , + 2PV  ~+u! e

<~0

cosh e q+h! cosh w  +h!
 < sinh ~h � u cosh Kh! 0 1

J  er ! chal

2m a -u ! cosh a n+h! cosh a  +h!
2 2

2 2 Jo ar !
ah- vh+v

�.19!

where

R =  x-g! +  y-q! +  z-q! ]2 2 2 I 1/2
�.2O!

R' = ~  x-P! +  y+2h+~! +  z-g! j2 2 21 1/2
�. 21!

r =  x- ! +  z-v!2 2 a y/2
�.22!

and

2
0

u = � a= atanhah.
g

�.23!

In �.19! PI/ is used to denote the Cauchy principal value of the

infinite integral and J is the Bessel function of the first kind

of order zero. Note that e is p dummy variable of integration.

It is necessary to take the principal value of the integral
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Figure 4. Definition sketch for Green's function.

because when <=a, the denominator of the integrand goes to zero so

that the integrand tends to infinitv.

It is worthwhile to consider the significance of each of the

terms in ",, separately. Normallv in steadv three-dimensional

potential flow past an object in an infinite fluid, it is necessary

to distribute only simple three-dimensional sources, such as S

on the surface of the object. Their potentials are of the form

I/R. However if we are interested in the flow past a half object
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G x,y,z; ,r3,<! = � + G* x,y,z;g,r3,r!
1

R
�.24!

where

l -~h
G* x,y,z;g,rr,q! = �, + 2 PV  e+v! e

~=0

cosh r: rr+h! cosh ~  +h!
 K: sinh vh � u cosh wh! 0 1

2g  a -v ! cosh a  q+h! cosh a   +h!
2 2

2 2 0 1
a h � v h+ v

�. 25!

As the general point  x,y,z! tends to the source location  E,,rr,g!,

1/R tends to infinity. On the other hand G+ remains finite. Thus

�.24! splits G into two parts, one singular at  F., rr,<! and the

other everywhere regular.

in a semi-infinite fluid with a rigid boundary in the plane of

symmetry, then we must consider the effect at any point  x,y,z!

due to the image source S' also. S' is the image of S in the
l 1

rigid boundary. This is to satis fy the kinematic condition on

the rigid boundary. In this case, in our coordinate scheme, the

potential of the image source is of. the form l/R'. Besides the

l/R and 1/R' terms, which occur in regular potential flow problems,

the infinite integral term and the imaginary term are needed in

C in order to satisfy the free surface boundary condition and the

radiation condition.

Before proceeding further, we note that G may be written as



It is to be noted that in the representation �.17! because

of the wav G is chosen, u, automaticahly satisfies conditions  A!,
.1

on the sur.".ace .'" x,y,z! of the body. 4'hen the normal derivative

of u is taken at a point  x,y,z! of the surface 5, using the.

representation �.17!, the resu1t is as follot«s.

~ x,y,z! � - � � f. x,y,z! - - � f.  e,n,r!
S

3G
� �- x,y, z;:,n,?! �.26!

It may be noted that on rhe right hand side of �.26! there is an

extra term, -~.  x,y, z! /2, which i.s unc xpected. IL arises because.
1

of the n'feet on the ooint  x,v,z! due to the source located

there. This is discussc d in detail in Annendix B. Suhstituti.n

of �.26! in the boundary condition �. 5-D! for u. results in

the following equat,'on «hich must: be satisfied at all noints

 x,y,z! of t: he surface h:

l ~r
� f,  x ! y, z ! �: � � f,   E, q, r. ! �; �.'  x, y, z; E, q, r ! dS

2tT, ] $n

�,27!2h, x,y,z!

 8!,  C! and  F.! of the boundary � value oroblem �.25! . So the

onlv condition left for it to ful rill ;,: t: he houndarv condition  D'!
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In �.27!, for given  x,y,z! and   ,n,z!, 3G/3n is known since G

is given by �. 19! . Similarly h.  x,y,z! is known from Section 2.

Hence the only unknown is the distribution function, f,. Since

occurs both under the integral sign as well as outside of it,
j

�. 27! is called an "integral equation." This particular form of

equation is known as "Fredholm's integral equation of the second

kind." Thus the boundary-value problem �.25! for the velocity

potential u. is finally reduced to a problem of solving the
1

integral equation, �.27! . Because the Green's function is quite

complicated, it is not possible to solve �.27! in a closed form.

Hence numerical methods will have to be used. Once f . is known,
j

the potential u. can be obtained from �.17!, and the problem
j

is essentially solved.

At this stage, one point must be emphasized. While so far

we have thought of the object as being a semiellipsoid because

of our interest in obtaining physical solutions for this case

eventually, nowhere in setting up the boundary-value problem

�.25!, and arriving at the integral equation �.27! did we

actually use the fact that the object is a semiellipsoid. Thus

the formulation presented so far is by no means restricted to a

semiellipsoid, but is valid for an object of arbitrary shape,

provided a is interpreted as a characteristic length of such an

object and S its surface. It is only when we attempt numerical

solution of the integral equation that we have to assume a specific



shape for the object in order to simplify calculations. In tune

with this procedure, we shall next consider hue to obtain phys cal

quantities such as forces and moments in the case of an object of

arbitrary shane, and postpone discussion of the numerical scheme

to a later section,
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PHYSICAL OUANTITIES

In this section we shall consider how to obtain the dynamic

pressures, forces and moments, once the integral equation �.27!

is solved numerically and the velocitv potentials u. are determined.
j

In all cases, the hydroriynami c press ure is obtained f ram

the corresponding velocity potential by applying Bernoulli 's

equation. The forces and moments caused by the action of. the

dvnaric pressure on the immersed surface af the object are obtain-

ed by integration over the surface. In the case of an oscillating

rigid object, the fa rces and moments are resolved into components

in phase with the acceleration and other components in phase

with the velocitv of the object. The former components are

characterised by dimensionless added mass or added moment of

inertia coefficients, whereas the latter components may be de-

scri.bed in terms of dimensionless linear or angular damning coef-

ficients. lichen a three-dimensional rigid su'. merged object af

arbitrary shape is held fixed and subjected to the action of a

train of regular waves, three passibl e components of force and

three possible components of moment arise. These are simplv

referred to as "wave forces and moments" and their amplitudes are

usually expressed in terms of dimens ionless force and moment coeff-

icientss. In the case of both the radiation and diffraction

problems, the final results in the form of dimensionless



coef ficients depend on the parameters a, h and other parameters

characterizing the geometry, which, for a semiellipsoid, are

given by b and c.

The hydrodynamic pressure Ii x,y,z,'t! at any point  x,v,z!

in the fluid region may be obtained from the linearized form of

Bernoulli 's equation as

II x,y,z;t! = -p � - x,y,z;t! �.1!

II  x,y,z;t! = pga RE[X. au  x,y>z! tanh ah! e ]
j

j 1,2,3,,6. �. 2!

For the case of wave interaction with the fixed object, the

dynamic oressure II' x,y,z;t! is given bv

II' x,y,z,t! = � pga Re. n a[u  x,y,z! + u  x,y,z!] e �.3!

where the dimensionless potential uO for the incident wave is

defined, analogous to u, by

where p is the fluid density and 0 is the velocity potential for

the particular problem under consideration. Therefore for oscilla-

tion of the abject in its various degrees of freedom, the dvnamic

pressure is given by
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o cosh a h iaxau  x,y,z! = � ioV  x,y,z!/ga n
O 0 cosh ah

e �-4!

We now define dimensionless dynamic pressures as

'.l, x,y,z;t! = 9,  x,y,z;t!/pga X, j=l,2,3, ~ ~ .,6,  a!

�.5!

 x,y,z;t! = ~  x,y,z;t! /gaga n  b!

 xyzt! =Re[p x,yz! e pe ]
ih -ict

�.6!

where

p x,y,z! = ~a[u  x,y,z! + u  x,y,z!]~ �.7!

and

 x,y,z! = Mg � a[u  x,y,z! + u  x,y,z!]
p

�. 8!

In this dissertation, the main interest is in the d5mensionless

pressure, R'. The pressure Jl' has a simple physical interpreta-

tion. It is the ratio of the pressure head in feet of liquid to

the amplitude of the incident wave in feet. Since tt' is

harmonic wi th time, we shall use p x,y,z! to denote the amplitude

of the save and 6 to denote its phase shift with respect to the
p

phase of the incident wave at the origin 0. Thus, by definition,
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Her~ ahab is used to denote the argument of a complex variable.

To avoid confusion when discussing the diffraction problem,

.! '  x,y,z;t! will be called the "dimensionless pressure" or

"pressure coefficient", p x,y,z! the "pressure amplitude coef-

ficient", and " the "phase shift of ~ressure."

The dvnamic Forces ~V. and moments C. due to the j -th mode

of oscillation of thn object are obtained from the pressure dis-

t ri but ion as

~. {t! =- P.  x,y,z; t! n dS, j=l,2,3,...,6,
j j {4.9!

and

G. t! =� 5. {v,y,z;t! {r x n! dS, j=l,2,3, ~ ~ .,6 ~
j S j {4.10!

area.

The i-th comnonent of the dvnamic force  or moment! which

arises due to the I-th mode of osci]lat ion of the object may then

be obtainecl From �.9! and �.10!, after simplification, as

F, .  t! = -� or a! F1, {x,y,z;t! h. {x,y,z! dS1 'I

-3 0
-� or a! -ga X. a tanh ah!

j

where r represents the dimensional position vector from the point

0' to a point on the surface S, and dS the dimensional surface
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Re u.  x,y,z! h.  x,y,z! dS e

�. 11!i,j=1,2,3,...,6

on substituting for 8, i rom �.2! . In �.11!, for i=1,2,3,

represents a force and the coef fici.ent 1 should be chosen,
i1

whereas for I-4,5,6, F, represents a moment and the coefficient
1.1

a should be chosen. The subscripts i=1,2 and 3 in 7 represent

force components in the x,y and z directions, respectively, and

the subscripts i=4,5 and 6 in F.. represent moment components
IJ

about the x', y' and z' axes, respectively.

The forces  or moments! on the body in the case of the radia-

tion problem may each be expressed as the sum of two components,

one in phase with the acceleration and the other in phase with

the velocity of the body, in the form

F,,  t! = -M.. a K.  t! -N.. a K.  t!, i j=l 2 3,...,6,
'I ij

�. 12!

where M.. and N.. represent added mass  or added moment of inertia}
I1 11

and linear  or angular} damping coef ficients, respectivelv. We

must emphasize that the term "damping" in the present context

does not bear any relation to viscous damping, but is related to

energy t ranspnrt . The negative signs are introduced in �, 12!

to account for the fact that by definition the forces and moments



oppose the motion of the body. Substituting for X. from �.2!
j

and comparing �.12! with �.11!, we may write the following ex-

pressions for the dimensionless added mass  or added moment of

inertia! and damping coefficients:

M.. = � PP u, x,y,z! h  x,y,z! dS, i,j=l,2,3,...,6, �.13!ij S j

N, . = � Im u,  x,y,z! h  x,y, z! dS , i,j=l, 2, 3, ..., 6 . � . 14!
S j

N..

ij -3
pea

�.15!i=1,2,3
j=1,2,3,...,6,

and the dimensionless added moment of inertia and angular damping

coefficients are defined by

N.,
w

paa

M.

ij -4
pa

�.16!1=4,5,6
j=1,2,3,...,6.

As previously mentioned, the first subscript i indicates the

direction of the force  or moment! involved and the second sub-

script j denotes the particular mode of oscillation. 1 or a three-

dimensional body of arbitrary shape, the two sets of coefficients

Here 7m is used to denote the imaginary part of a complex express-

ion and the dimensionless added mass and linear damping coefficients

are defined by



and N.. may each be arranged in a 6 x 6 matrix. The dimension-
ij ij

less coefficients M.. and N.. characterize the solution to the
11 IJ

I',' t! = �  l or a! !I' x,y,z;t! h  x,y,z! dS,
1 S

i~i, 2,3, .,6, �.17!

where again the coefficient 1 is chosen for the case of a force,

i.e., when i=i,?,3 and the coefficient a is chosen for the case

of a moment, i.c, when i=4,5,6. Substituting for II' from �,3!

a»d simpli fving, ze may write the dimensionless force and moment

components as

F, ' t! Pe a u  x,v,z! + u  x,y,z!
8

>.  x,y,z! dS e, i=1,2,3,...,6, �. 18!

where, by definition.

radiation proble~.

The dvnamic forces and moments due to the action of a train of

regular incident waves on the fixed rigid object may be obtained

in a similar. manner from the pressure distribution as



In �.19! the coefficient 1 applies for i=1,2,3 and the coefficient

for i=4,5,6.

We shall for convenience rewrite �.18! as

id. -iot
F.' t! � Pe[f.' e i e ' ], i=1,2 3,...,6

1
�.20!

f.' = ~ a[u  x,y,z! + u  x,y,z! ] h  x,y,z! dS ~

i=1,2,3,...,6

and

= aug t a[u  x,y,z! + u  x,y,z! ] h.  x,y,z! dSi 7 ' ' 0 ' ' i
S

i=1,2,3,...,6 �. 22!

In general f' ,may be called the wave force or moment coef ficient
1

and 5. the phase shift of the wave force or moment, as the case

may be. The coefficients f.' together with the phase shifts 6.
1 i

completely characterize the forces and moments acting on a fixed

ob ject of arbitrary shape.

For a fixed semiellipsoid, because of symmetry, the only non-

zero force coefficients are f ' and f' which correspond to forces

where' f.' represents the amplitude of F.' and 6 its phase shift with
1. 1 i

respect to the phase of the incident wave at the origin 0. Thus
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in the x and y directions respectively. In this dissertation, for

easy identification, these will be denoted by f. and f and called
X

the "horizontal and vertical force coefficients", respectively.

Similarly the only non-zero moment coefficient is f' which!
6

corresponds to a moment about the z'-axis. Therefore it will be

denoted by m, and simply called the "moment coefficient." Thez'

phase shifts 6, 6 and 6 will he denoted by 6, 6 and 6 and
x m

called the "phase shifts for the horizontal force, vertical force

and moment", respectively. Summing up, we use the notation

hereaf ter that

f = f f = f
V

�.23!

 b!and 6
v 2 mX

In view of the fact that for a fixed semiellipsoid f, f and mx' y z'

are the only non-zero force and moment coefficients, we shall, for

applying Haskind's relations, concern ourselves hereafter mainly

with the cases ]=1,2, and 6, i.e., surge, heave and pitch for an

oscillating ellipsoid.

Haskind's relations as well as the energy check are developed

in Appendix C.
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5. TRANSFORMATION OF COORDINATES

The body under consideration in this dissertation is in the

farm of an ellipsoid. It is therefore convenient to work the

problem in terms of ellipsoidal polar coordinates which conform

to the siiape of the body. These coardinates are defined on the

surface of the body as follows:

x cos a sin g, y + h = c cos g, z = b sin a. sin

F,=cas 8 sing, n+h c cos !j, .=bsing sing

Thus on the surface S, we associate the new coordinates  a,$! with

the point  x,y, z! and  8, e! wi th the point  F�q, «! . The co-

ordinates o. and 8 represent azimuth angles while g and P re-

present verti.cal anglos, as shown in figure 5.

Figure 5. Trans formation of coordinates,



Since the equation of the surface of the ellipsoid is given

2 2
S x,v,z! = x +- +2  v+h! z

c b

1=0

the unit normal vector n is given by

v+h z
ix+ j   !+k�

2 2
C

2  v+h! z 1/2[x + � -+ � ]
4 �4C

An expression is derived next for the area of an elemental

surface dS of the eli.ipsoid in terms of the new coordinates.

Suppose the elemental strip dS is so chosen that its projection

dS on the  y,z! � plane is a rectangular strip with sides dy andX

dz, as shown in figure 6. Then

dS = dy dz = dS  n i!
X �. 4!

so that

dv dz I 2  v+h! z t l/22 2
dS = � x + � +-

x 4 4 �. 5!

dy = -c sin $ dg

Note that dy and dz are increments in the coordinates obtained bv

moving along the surface. Therefore if. z were held fixed and y

aIone varied, then from �.1!
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pigure 6. Determination of dS.

Similarly if y were held fixed and z alone varied,

dz = b cos a sin $ do �. 7!

dS = � bc sin $ T e,g! d$ d~» � .8!

where

2 2

T u,g! =  cos a+ ! sin g+ j2 sing . 2 cos P 0 l/2
2 J

c

�.9!

Since we are using the convention that  a,$! is a particuJar

point, and  g,Q! any general point, on the surface S, the coordi-

nates u and ! will be replaced by ' and g, respectively, in the

expression for RS to yield

�.8'!dS = -bc sin $ T 8,$! d4 d6

Therefore, on substitution into �.5!, and simplification, we have
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The int egral equation �.27! can now be trans formed, using

the new coordinates, as

b c 2~ -i/2 qr,
 e $! + .--- f .  8,'q! �  <x,P;6,g! T b,g! sin y~ d4 dg

F=Q < =.0 ! ~in

�.10!2 H.  ~x,4!
j

where the functions H.  a, $! are to be obtained from t' he functions

h.  x,y,z! given in �.26! by transformation of coordinates. The
j

new notation is introduced to avoid confus ion with the relative

depth h when the sub..cript j is dropped in subsequent sections.

From �. 3!, in terms of the new coordinates,

1 cos h " sin a si~nn = � � [i cos a sin $+ j � ~+ k
T a,y! ' ' c b �.11!

Therefore the functions h  x,y,z! given in �.26! transform as

follows.

H  o,,y!
T{~,y!

2 2
c -b sisin o sing

b T m,y!
�.12!H4 o, C!H  o,y!

bc T{o,y!

2
1-c cos a sin 4 cos

2
csin g

2
b � 1 sin u cos

H  o., q!
C T o, 0!

ia cos u sin
e

7 ' T u <! cosh ah ~ c sinh ac cos g!

+ i cos ~ sin g cosh ac cos 4!]
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6. NUMERICAL PROCEDURF. FOR A SEHIKI.LIPSOID

In this section the numerical procedure for a semiellinsoid

is first outlined briefly and then details of the procedure are

given. Since additional subscripts are. introduced in this section,

the subscript j, which corresponds to the mode of oscillation or

scatter, is dropped from u., f. and H. in this section and
j j

Section 7. Note that the procedures given hereafter are applied

only to the four problems corresponding to surge, heave, pitch and

s cat t er   j =1,2,6 and 7, respectively! .

Outline of the Procedure

The approach to the numerical solution of the integral equa-

tion �.10! mainly consists of replacing the integral equation by

a finite set of linear equations. Since onlv two ellipsoidal

coordinates are needed to represent a point on the surface S, we

may imagine a two-dimensional surface S�,<! on the  f3,$!-plane

corresponding to the three-dimen;.ional surface S <,n,r!  refer

figure 7! . The surface S 8,$! is actually a rectangle with sides of

length 2m a..d vr/2 re-.pectively. It is next divided into a grid of

2
4N squares with sides of length s=~!2N, narallel to the 8 and 6

axes respectively, where N is a suitably chosen positive integer.

Thus N characterizes the grid size, a smaller N indicating a

coarser grid and a larger N, a finer grid. The centers of the

various squares are called "nodal" or "pivotal points." We attemot
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 a! Numerical grid in three dimensions.

m/2  b! Numerical grid in  8,$!-plane.
Figure 7. Numerical grid for N=5.

2to satisfy the integral equation at only the 4N nodal points in-

stead of all the points of the surface of the semiellipsoid. A

unique index k is associated with any particular nodal point  a,P!

and the square element surrounding it, and another index I with any

general nodal point t.g,C! and. the square element surrounding it.
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For example, the coordinates of the nodal point k are denoted by

o and !>, and those for the nodal point i, by 8 and P, respec-7

.2tively. M>ile k and 6 may assume integer values from 1 to 4N

and P. may each assume only 4N unique values.

ma> each assume oniy N unique va1ucs.

Similarly, 4 and

Since the distribution f unction f �,:~i! is we.'I 1-be1!aved, o.e r,.!y

assume that its average value over each square clement is approxi�

equations as follows:

4x

k " k! = 2H, k=1,2,3,...,4N
C �. 1!

where

f = f u,g !,  a!

f = f  i',il !,  b!

+
~G
� ,� ~k,< k,H,4! T d,!I:!

2

�.3!sin f dpi! dll

and

mately equal to the. r! lue at the nodal point of the element. 'I'hue

2the integral equation �.IO! is now rewritten as a set of 4N linear



Equation �.1! may now be set up as a matrix equation. Thus

[K -6 ] [f]=[2H]

where 6k is the Kronecker delta function defined such that

l for k
kk

0 for k f k.

Note that the first matrix on the lef t hand side of �.5! is a

square matrix. Its elements may be computed numerically from �.3!

since G is known from �.19!. The other two matrices in the

equation are column matrices. Of these, the elements of [2H ] can

be computed from �.12! so that [f ] is the only unknown. On solv-

ing �.5! by a special computer subroutine for the unknown distri-

bution function, we obtain the values of f at the nodal points as

kK kk

Once the distribution function is known, the velocity potential

u may be obtained from the representation �.17!, which may be

written in ellipsoidal coordinates as

2m m/2

u  a,y! f  S,e! G n,y; H,e! T 8 0!
5=0 /=0

dg dg



4'8

u. f N ~ k 1~2e3 ~ 4N
2

�.9!

where

u =u a,y ! �, 10!

I< + � $ +--
bc 4 2 > 2

G m, y; B,g! T R,i~!!

2 2 2

sin ip d~'i dt's �. 11!

Equation �.9! may be rewritten as a matrix equation. Thus

[uk! = [Nk�, j [ fi I �.12!

The elements of the square matrix M may be computed numerically
k~.

from �.11! since C is known from �,19!. The column matrix f.

is already given by �,7!. Therefore the velocity potential, u,

corresponding to t' he nodal points is obtained from � ~ 12! as a

As far as the determination of the pressures, forces, etc., is

concerned, we saw in Section 4 that it is necessary to know the

velocity potential u only on the surface of the ellipsoid. In

the numerical procedure u is determined at only the nodal points of

the surface instr"id nf all thc points. Following the same indicial

notation as before, we write �,8! as
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Matrix Elements M

We use for G the form �.19! which is rewritten here, for con-

venience, as

G  x, y, z; g, n, z ! = � + �, + G**  x, y, z; P, rl, Z !
1 1

�.13!

column matrix, by matrix multiplication. Once u is known, the

physical quantities of interest such as pressures, forces, etc.,

may be obtained numerically, using the relations given in Section 4.

The numerical procedure for the problem, applied in a straight-

forward manner, has been explained so far. In practice this pro-

cedure is somewhat modif ied. For a semiellipsoid, the distribution

function f is symmetric about the  x,y!-plane in all four cases.

Even greater symmetry exists for f in the case of the three radia-

tion problems, but is not utilj,zed in this dissertation since the

radiation and scatter problems are solved simultaneously, using a

common numerical procedure. In view of the syrrlretry of f, it is

necessary to solve the integral equation over only half of the

surface S. The resulting modifications in the numerical procedure

are explained later on.

The rest of this section is devoted mainly to the numerical

evaluation of the matrix elements K and M which involve 3G/3n

and G, respectively. Because 3G/an and G are quite similar, we

consider them simultaneously, where necessary.
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where

OP -v.h
 ~+v! e cosh ~ q+h!
 K s inh Kh-v cosh v;h!<=0

cosh K  y+h! J  rrl! d~

2v a -v ! cosh a q+h! cosh a  +h!
2 2

2 2
ah � vh+v

�. 14!

next.

Zn terms of the ellipsoidal coordinates, R may be written from

�.20! as

2 2 2
R a,g; B,g! [ cos a sin g-cos 8 sin $! + c  cos $-cos4!

2 2 1/2
+ b  sin a sin !-sin B sin g! ] �.15!

Because of the rapidly varying nature of 1/R, for purposes of

accuracy, a nine point Simpson's method is used to integrate 1/R

As mentioned previously, 1/R becomes singular as the point,  E,n,c!

approaches  x,y,z! and, in general, varies rapidly in the neighbour-

hood of  x,y,z! . On the other hand, l/P ' and G+* are both regular

everywhere. However, the former varies rapidly whereas the latter

varies slowly. In view of these features the three parts of the

Green's function in �,13! are integrated separately, using

different methods. We take up these three integrals, one by one,
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S S
bc i. 2 .' 2 l

8 + �, Q, +
T g,4! sin Q dQ d5

k' k'2 ". 2

bcs

p=l

 valid for 5I. / k! � ~ 16!

where 8 and P are defined for the R � th element as
p

P +  p-2! �, p=l, 2, 3,  a!

�. 17!

+  q � 2! �, q=l, 2, 3,  b!
q R 3

and the Simpson's numer ical coeff icients C and D are given by
P

C = C = D = D = 1, and
1 3 1 3

�. 18!

C=D=4

The numerical method given above breaks down for the singular

element  case P.=k! since, close to the singularity, the 1/R term

tends to infinity. Therefore a different scheme has to be used for

evaluating the surface integral on the left hand side of �.16!

over all the elements R except the element R=k. Thus we approximate

the surface integral over the element I as
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for such cases. Such a scheme is described in a subsequent

paragraph.

As for the second integral in M , since 1/R' varies rapidly,

we evaluate its surface integral also, by a nine point Simpson's

method, in a manner similar to that given in �.16!. Note that in

ellipsoidal coordinates R' is given from �.2l! as

2
R' a,$;8,$! = [ cos a sin $-cos 8 sin $!

+ c  cos p+cos g! + b  sin m sin >-sin 8 sin g! j �.19!
2 2 2 2 1/2

and that since 1/R' is regular everywhere, the Simpson's method is

valid for all

+ � $ +-s s

G** a,g;5,g! T 8,$! sin g dP d6
bc R 2 R 2

j3
2 2 2

 valid for all t! �.20!

where in terms of the new coordinates

As for the third integral in 3 , since G** i.s not only regular

everywhere, but also varies slowly, its surface integral over any

element R is approximated by multiplying the value of the integrand

at the nodal point  8 P ! by the area of the element. Thus
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00 -Kh
 «+v! e cosh «c cos 4!

 « sinh «h-v cosh «h!«=0

cosh «c cos $! J  «r ! d«

2 2
+ . 2m a � u ! cosh ac cos 0! cosh ac cos $!

2 2 0 1
ahvh+u

and r is obtained from �,22! as
1

2r> a,$;8,0! = [ cos a sin $-cos 8 sin $!

2.... 2 1/2+ b  sin u sin g � sin 8 sin Q! ] �.22!

Matrix Elements K

Following a procedure similar to that used for G, we revrite

3G/Bn occurring in �.3! as

  ! +   ! + G**
3G 3 I 3 l �

3n Bn R Bn R' 3n �.23!

The three terms on the right vill be integrated separately. Noting

that the normal derivative is taken at the point  a,$!, it may be

We note here that the numerical integration of the infinite in-

tegral in �.21! poses certain problems. These are discussed in a

subsequent paragraph.
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shown from the expression for R given in �.20!, after considerable

simplification, that

>� R!  o.4;8,4! =�
3 1

[1- os  -8! ' 8 sin y
R T u,y!

3

� cos $ cos Q] �.24!

3 1. 1>�  � �,!  <,0;8,4! =� 	-cos a-8! sin 8 sin 0
R' T u, $!

�.25!+ cos $ cos $]

Note that the expression on the right is regular everywhere. More-

over, since 1/R varies rapidly, we use the nine point Simpson sf 3 t

method for integration of 3 �/R'!/Bn for all elements

In terms of ellipsoidal coordinates, 3G**/Bn at any point

 a,$! is given by

Since 1/R varies rapidly, we use the nine point Simpson s method3

for numericaL integration of 8 �/R!/3n for all elements K except

k. In the latter case, an alternate numerical scheme is used. It

is described in a subsequent paragraph.

From �.21! the normal derivative of 1/R' at any point  a,$!

can. be shown to be given by
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CO -<h
QQAA K v+v! e cosh vc cos Q!
3n ' ' ' � 0  K' sinh ~h-v cosh <h! T a,g!

J  ~r !
[sin $ � cos a-8! sin $ sin g! cosh wc cos $!

ll

sixth »c »os P! J  »r ! d»cos C 0

2xa a -v ! cosh ac cos 4!   i 22 2

 a h-v h+v! T a,4!
2 2

Jl  arl !
- cos  a-P! sin g sin Q !cosh ac cos 4!

l

sinh ac cos $! J  ar !
cos $

c 0 l �.26!

Since 3G**/3n is, like G~*, regular everywhere and varies

slowly, we approximate the surface integral corresponding to it,

over any element R, by the product of the surface area of the

element and the value of the integrand at the nodal point � ,$ !.

For the case R k, note that as r ~ 0, J  vr !/r and J  ar !/r

tend to v/2 and a/2 respectively, whereas J  ~r ! and J  ar ! tend

to unity. Also, the integral in �.26! poses numerical problems

similar to those for the integral in �.21!. So the two integrals

are evaluated by using the same methods.
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Special Scheme for Integrating 1/R and B�/R!/Bn over the Singular

Element  case R=k!

It was indicated previously that Simpson's method cannot be

used for the singular element containing the nodal point � ,gk!,

i.e. for the case, R=k. This is because even though the integrals

are finite, the 1/R and 3 l/R!/3n terms become singular as  g,$!

approach  s  a ,P ! and pose problems in numerical integration. The

integrals in these cases are "improper" and have to be treated by

cc. lal scheme. Kim �964a; Appendix! has given in detail a

method for treating sttch integrals. Therefore only the idea behind

t he scheme and the final results are indicated here briefly.

I'or each of the int«g~als mentioned, by using Taylor's series

expansion around the singttlar point  a,<j> ! and binomial e'pansion,

we can show that the intcgrand consists mainly of three parts.

 i! a singttlar part whi< h varies as 1/F where 6 is the distance in

the  p,,]i!-plane between the paints �,$! and  a,g !,  ii! an

indeterminate part which depends on the angle of approach from

 H, i! to  ak,4 !, i. e. on  Q-$ !/  V-ak!, and  iii! terms of higher
order. One of the reasons for the complexity of the problem is

that the surface S x,y,z! of the object is curved and not plane in

the neighborhood of the singularity. In order tc overcome the

numerical problems and obtain good accuracy, parts  i! and  ii! are

integrated by using a special scheme nf pl.-.ne polar coordinates



S s

bc
k+ < +

2 k 2 1
s s R T 8,4! sin 4 dg dg1 4m a � � ~ � � R ak ~k'6 ~!

k 2 k 2

2
VCS
16~< 4 sin lIlk T ak'~k!

m/4 sec~dc
2 2 . 2 1/2

[E COS Z, Sin Z!+C Sin v Sin lIl ]

3~/4
csc zf d~

2 2 2 1/2"~/4 [E cos z, sin ~!+c Sin ~ Sin lIl ]

R  g, lIl; g, A !k' k' p' q
p=l q=l

[E 8 ek9 $ lIlk!+c  Ill lII ! sill lIl !2 2 . 2 1/2
p k' q k q k

�. 27!T R,Q ! sin ill
p

valid around the singularity. The higher order terms, on the other

hand, are separated and integrated using Simpson's nine point method,

noting that they vanish when  l3,$!  a,g !.

The final results of the special scheme are given as follows.

The integral of  l/R! for the case k=k is evaluated as
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[1-cos n -0 ! sin $ sin g � cos $ cos $ j
k p k q k q

 8 -<k! sin 4! + � -4 !2 . 2 2
p k k q k

2 [E l k'V 4k! c � 4k! 4kj2 2 . 2 3/2
p k' q k q k

�. 29!

Note that corresponding to p = q = 2, the integrand in the Simpson's

formula is set to zero, in the numeri.cal procedure.

In �.27! and �.29!, for the integrals involving T, the

integrands become indeterminate at the midpoint of each integration

range and pose a problem in numerical evaluation, even though the

integrals are finite. To avoid this, the x-integration is carried

out to within 1/ accuracy, using Simpson's three-eighths rule.

Details of this method are given in connection with the infinite

integrals.

Numerical Evaluation of the Infinite Integrals in G** and 3G**/Bn

As indicated previously, the infinite integrals in G+* and

3G**/3n pose certain numerical problems. In each case, the

denominator of the integrand tends to zero when ~ ~ ~ where K
0

is the solution of the equation
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�.30!« tanh  «h! - u = 0.

 Since v = a tanh  ah!, note that « is equal to a.! In view of

this, the principal value of the integral must be taken. Moreover,

the upper limit of the integral is infinite, so that for numerical

purposes it has to be replaced by a suitably large number such that

convergence is assured. The procedures used in overcoming these

problems are described briefly next. They are taken directly from

Nonacella �966!.

The singularity K = K ~ The basic idea of the procedure con-0'

OQ -«h

I =PV  «+v! e cosh «c cos Q! cosh Kc cos $!
3 J  «sinh «h-u cosh «h!

«=0

3  «r ! d«

Note that as far as the integration is concerned, the integrands

are functions of «only since everything else is fixed. Therefore,

f or conveni ence, we def ine

sists in recognizing that the integrands are singular like

1/ K-K ! subtracting out the singularity 1/ «-«! and then in-
0

tegrating the singularity analytically and the rest of the integral

numerically. Consider first the integral in G**. If it is denoted

by I, then from �.21!



72

Pl K! =  K+v! e cosh KC Cos IJJ!-Kh coah Kc cos $!
h h 0 Icosh  Kh!

and

P  K!  K K !

1 K tanh Kh!-uQ  K! �.33!

The integral I may now be rewritten as

Ql  K!
I = PV 0 dK

K-K
0

2K Q  K! � Q  K ! 2K
dK+Q  K ! PV

. 0 K-K l 0

Q  K!
1

dK
2K K Kp

0

�. 34!

As K ~ K , both the numerator and the denominatOr Of the first in-

tegral on the right vanish so that it becomes indeterminate, but

not singular . It is finite and its value can be established by

I'Hospital's rule, if necessary. The integrand of the second

integral becomes singular at this point and therefore the principal

value of the integral has to be taken. As for the third integral,

since the singularity K Kp is Outside the integration range, there

is no problem involved in numerical evaluation,

Let us now consider the second integral. By definition,



/3

2K K -C 2K

K=O P <~0 0 "0 ~ +e P

On carrying out the integrations, setting the limits, and simplify-

ing, we have the result

2K
Pv ' " =p.

~0 K KQ �.36!

Therefore

2<0 1 Ql 0 Q  ~!f dK:
2K 0

0

�.37!

P  ~!  K-~ !

l 0 ' r tanh vh!-v
q  ~ ! = lim.

0

P  KQ! KP
�.38!2 2

h[~ -v +u]
0

If the infinite integral in BG**/3n is denoted by I, then by

following a procedure similar to that for I, we may obtain for I<

the final result

,   !-Q, ,! Q2 ~!
I ~ de+ dv4 g=P K KO K KQ

0

�.3S!

Thus the singularity K K is removed and bot'h the remaining integrals

are well-behaved, and can be numerically evaluated.

We next determine Q  ~ ! by using l'Hospital's rule as



whe r e

P  «!  x-«!
2 0

2 x tanh   xh! -v � . 40!

-xh
« «+v! e cash xc cos l~!, . 2

T  o, $! cosh  xh!

J  «r !
� ca s  a-P! sin $ sin $ ! cash «c cos Q!

rl

co s � sinh «c cos g! J  «r !
c

� .41 !

P   «!

Q2  «0!
h[«-v+a]

0

�. 42!

Numerical int egration of the integra 1 s, I and I . We first

consid er the in tegrat ion o f the f inite integral in � . 3 7 ! and � . 39!

and then pass on to the inf inite integral . S ince the integra 1 s

I and I are similar in f orm, the procedure ia g iven for I only .

The integrand in the finite integra 1 in �, 37! becomes in-

determinate as «~x, even though the va lue of the integra 1 is

f inite. This poses a problem in numerical integration. Zn order

to overcome the same, Simpson ' s three-eighths rule is used . In

this procedure, it is nat necessary to evaluate the integrand at

K Kp because the ordinate there is never used in the integration.
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calculation is repeated and the final result Is compared with that

obtained previously, to see if 'he two results are sufficiently

close, as determined by a suitably chosen convergence criterion. If

they are, the process Is stopped and the second result is assumed

to be the value of the integral. If not, the iteration process

is continued until the results at the beginning and end of an

iteration satisfy the convergence criterion. Then the result at

the end of the last iteration is assumed to be the value of the

integral. In either case, the interval h~ hv that provides

convergence is stored for future use in connection with the in-

finite integral.

The vain problem with the integral with an infinite upper

limit is to carry out the numerical integration up to a suitably

large number  as an upper limit! such that convergence is ensured.

For this purpose the following scheme is adopted. The integra' is

written in the form

I
2~ ~ tanh ~h-u

0
n

n~l

�.43!

The integration range � to 2< ! is divided into 6n+3 equal interva .s

where n is a suitably chosen positive integer, usually l to start

with. The integrand is evaluated at the ends of cash interval and

the integral is determined from the weighted average of the 6n+4

ordinates. The number of intervals are next increased by 6, the



76

wher e

Ql  ~!
I dw
n , ~ tanh ~h-u

n

�.44!

and

?< and v: = ~ + p, n=1,2,3, ~ ..
1 0 n+1 n

is chosen as follows. If 1 < 26~0, g is chosen to be 2h< . If

1 = 2h' , p is chosen to be the highest integral multiple of 26<

that is less than one. Here he� is the mesh size that has given

convergence for the finite integral. Each of the integrals I is
n

!S ~ is less than a suitably chosen convergence criterion.

The actual convergence criteria used in obtaining the results

are as follows. In the case of the finite integrals between the

limits <=0 and 2K:, if the value of the integral obtained by using

6n+4 ordinates is denoted by I n!, the convergence criterion used

is that

II n+1!-I n!!
I  n! �.45!

Similarly in the case of the infinite integrals, the criterion used

is that

evat tlated by the usual Simpson's one-third rule using the mesh size
M

The partial sum S = 7 I is assumed to be the value of
n=l

thi. infinite integral, where M is chosen such that the ratio
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�. 46!S
M-1

with the notation previously def ined. Since these criteria are

arbitrary, to determine their effect on convergence, the accuracy

was changed in a few cases to 0.5X and the final results were

compared. Negligible differences were found in the final results

due to the change. Thus we are assured of the convergence of the

integrals as well as the accuracy of the results obtained with the

criteria given in �.45! and �.46! .

Symmetry in the Case of a Semiellipsoid

As previously mentioned, the distribution function f is

symmetric about the  g,a!-plane for the four problems being con-

sidered. This symmetry may be expressed as

�.47!

As a result, it is necessary to find the distribution function f

over only one half af the surface S 8,$!, say, the half for which

0<g<m. Therefore in the numerical scheme for finding f we have

2 2
to consider only 2N linear equations instead of 4N equations.

Since T�,$! is even in g, we may, using �.47!, write
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27  8 0 p p f 8,q! ~  a,y;8,<! T 8,y! sin q dy d8BG

J f 8,4![ �  a,0;8,4! + � ' a,4;-8,il!
r" I BG 3G

5=-0 /=0 I. a ~

T 8,$! sin $ dg d8 �. 48!

at  a,]! may be rewritten as

m m/2

  ,<! = � f 8,V! [G  ,V;8,~! i G  ,C;-8,C!]4> 8=0 =0

T 8,$! sin f d$ d8 �.49!

In view af the preceding, equations �.l!, �.5!, �.7!, �.9!

and �.12! are modified as

2N

-f + [Kk~ + K'k~] = 2H, k=1,2,3,...,2N �.1'!

The physical interpretation of �.48! is that at any point  a,g!

the effects of a source at  8,$! and another source at  -8,$! are

considered simultaneously. The second source is the mirror image

of the first in the  <,n!-plane.

Similarly, the representation �.8! for the velocity potential
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�.5 '!

�. 7'!

2N

f~ M k + N'k !, k 1,2,3,...,2N 2

JL~1

�.9 '!

�.12'!

where K' is obtained by replacing the argument 8 of 3G/an in

�.3! by -5. Similarly M' is obtained by replacing the argument

5 of G in �.11! by -J3.

The matrix elements K' and M' are evaluated numerica11y

using the same methods employed for K and N , respectively.

There is however one important difference. The B�/R!/Bn term in

K'~ and the �/R! term in M'k never become singular. This is

because the image singularity  -g,P! can never coincide with the

particular point  a ,P !, as they are ou opposite sides of the

 Q,n!-plane. Therefore the numerical integration of the terms

mentioned can be done using the nine point Simpson's method for all

elements K. No special scheme is necessary for the case k=k.
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7 ~ SIMPLIFICATION OF CALCULATIONS FOR A HALF SPHEROID

The numerical scheme presented in Section 6 involves, for a

semiellipsoid, much computational work, even after the symmetry of

the distribution function, f, is utilized. For example, for N~5,

which is the grid size used in obtaining most of the data presented

in this dissertation, the matrices corresponding to the Green's

function and its derivative are each of size 50 x 50. Thus 2500

elements of each of the matrices [K ], [K' ], [M ] and [M' ]

have to be evaluated. The singular cases of [K ] and [M ] have

to be calculated by using a special scheme. Moreover, for each

element, the numerical evaluation of the infinite integral takes

considerable computer time because it involves iteration. In

addition, the integrals involve Bessel functions which themselves

have to be calculated by a series approach. In view of these

factors, the time and cost involved in solving numerically the

diffraction problem for a semiellipsoid, for a given set of

parameters a, h, b and c, become prohibitive even on a high speed

digital computer such as the IBM 360/65 system used, at. least for

the particular form of Green's function chosen. Hence it was

decided to restrict the numerical computations to a half spheroid,

axisymmetric about the vertical axis  case b=l!, so that by

utilizing the axisymmetric nature of the object most of the

numhrical calculations could be kept to the barest minimum, and
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the results stored and used over and again. Thus repetition of

the same calculations was avoided and the computer time was reduced

to only a fraction of what it would have been otherwise.

In what follows, only the basic ideas behind the simplifica-

tions are given. For the sake of brevity, the details are kept to

a minimum, Since much of the computational time is spent on the

evaluation of the infinite integrals, it was decided to concentrate

on all possible ways of reducing the computations connected with

them.

Consider, for example, the infinite integral part in I . From

�.40! and �.41! it may be written in the form

f ~ 22"  sin $-cos a-l3! sin $ sin Q!
d<

2y' K-K
0

T  x,y! r

-rh
K tc+u! e cosh ~c cos g!

cosh Kc cos ljl!K tanh rh-v cosh ~h

<Xl -eh
cos $ f w  w+v! e

1 1 cT a p! f2 ~ tanh Kh v
0

 S.l!cosh wc cos p! J0 Kri! d<cosh eh

The procedure used consisted of evaluating the two integrals on the

right separately, storing the results and when necessary, multiply-

ing them with the other factors, which are functions only of the

coordinates, and using them. If the coordinates were not involved



82

in the hyperbolic and Bessel functions, the integrals could have

been calculated once for all. As it is, the integration had to be

carried out for each set of coordinates. Note that, for b=l, the

expression for r simplifies to

 a,g;B,g! = [sin !+sin g-2 sin ! sin g cos a-g!]
2 . 2 L/2

�.2!

Thus, r is a function of only g, g and ~a � 8~ rather than all the

four variables P, g, a and B. Therefore the two integrands are

functionS of II, $ and ~a-g~, beaidea <. OnCe the integration with

respect to v is carried out, the results are functions of

and ~ a-g ~ only. Further, since in the numerical procedure only

of g , g and ~o -S ~. Suppose we carry out the integration of the

first integral for all possible combinations of these three

variables. Then we may imagine the results to be stored in a

three-dimensional matrix of size N x N x 2N corresponding to the

unique values of g, Q, and I a -8 ~ . However, since the first
k

integral is symmetric in g and g, it is necessary to evaluate the

diagonal elements and only half of the remaining elements. Thus

for N 5, instead of the integral being computed 2500 times by

going in a straightforward manner, it was evaluated only L50

times, by understanding its functional dependence. As far as the

second integral is con.cerned, since it is not symmetric in $ and $,

the nodal points are considered, each of the integrals is a function
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It can be applied for sizes of f  K < + K'> ! � 4> ] upto l00 x l00.
kP. kX

This limits the grid size parameter N to a maximum value of 7.

However, because of storage limitations of the IBM 360/65 system

employed, the maximum value of N that could be used with the

present program was 6.

Once the velocity potentials u are obtained as a column matrix

corresponding to the nodal points on one half of the surface S, the

physical parameters of interest are determined from the expressions

given in Section 4. It is to be noted that the pressure distribu-

tion is symmetric about the  x,y!-plane for all the four problems

considered. This fact is utilized in the calculation of the various

other physical parameters. The forces and moments and their phase

shifts for the d-'..'fract'.on problem, and the damping and added mass

coefficients for the radiation problem are determined from the

velocity potentials 'uy using straightforward numerical integration.

Thus the value of any si rface integral over a grid element is

approximated by the product of the area of the element and the

value of the integrand at the nodal point.



8. ASYMPTOTIC SOLUTION AND EXPERIMENTS FOR A HEMISPHERE

Asymptotic Solution for a Hemisphere

From the theoretical paint of view it is of interest to

develop analytically an asymptotic solution for the diffractian

problem for a half spheroid, valid at least over certain ranges

of the parameters h, a and c. Such a solution will serve as a

check on the more detailed numerical solution in the range over

which the asymptotic solution is valid. From the engineering

point of view, while the detailed numerical solution is exact, it

takes considerable computer time. So it is advantageous to have

a simpler closed form solution to the problem and know over what

range of the relevant parameters, the simpler solution yields

practically valid results. Such an asymptotic solution has been

developed by Garrison for a hemisphere  c = 1.0!. The details are

given in Garrison and Seetharama Rao �971! . So only the assump-

tions and the final results are given here.

For a ~ 0, the boundary-value problem simplifies somewhat and

the free surface behaves as a rigid plane boundary. If in addi-

tion, the relative depth, h = h/a, is large, the free surface

boundary condition may be neglected and the problem reduces ta

that of unsteady motion af a hemisphere in a semi-infinite fluid.

The velocity potential far this case is well-known from potential

flow theory. The pressure coefficient is obtained from the

velocity potential as
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II' x,y,z;t! � cosh[a h+y! ] cos ax cos at
cosh ah

+  cosh[a h+y!] sin ax + � "] sin at 1
2

Hence p x,y, z!, f and f are determined as
X

p x,y,z! = L cosh [a h+y! ] cos ax1 I 2 2
cosh ah L

+ [cosh[a h+y! ] sin ax + � !ax 2l 1/2
2  8. 2!

Tr a

x cosh ah

and

f 2 8 sinh a � cosh a + 1
2

a cosh ah
 8. 4!

a�+C !
f

x -3 cosh ah
a

 8. 5!

Since for a sphere in an infinite fluid the added mass coefficient

C is 0.5, for a hemisphere the expression for f given in  8.5!
m x

reduces to that in  8.3! .

Note that m, = 0 for a hemisphere. We can expect the above ex-

pressions to be valid for small a. Note that in the limit as

a~0, f tends to maand f to m.
X

An equivalent form of  8. 3! may be obtained by assuming the

horizontal force to be the sum of two components:  i! the buoyancy

force due to the pressure gradient, and  ii! the added mass force.

If V is the displaced volume of the object, the result is
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Experiments for a Hemisphere

Some experimental results on the horizontal and vertical force

coefficients for a hemisphere, obtained at Texas A8N University,

are also presented in this dissertation for a comparison with the

diffraction theory. Details of the experiments are given by

Garrison and Snider �970!. So only a brief description will be

given here.

The experiments were conducted in a 2 f t wide by 3 f t deep by

125 ft long wave channel. A 7 in. O.D. plastic hemispherical

model was suspended vertically by fine wires from small canti-

lever beams equipped with strain gages. The model was suspended

with a clearance of approximately 1/16 in. off the channel floor

so that it was supported only by the beams. The pressure inside

the model fluctuated because the model was off the channel floor.

Therefore the internal pressure of the model was recorded, by using

a pressure transducer, simultaneously with the strain gage read-

ings for the vertical force and the latter were corrected suitably

to account for the varying internal pressure. Horizontal forces

on the model were also measured by strain gages. The wave height

was measured by a resistance type wave gage.

Because the experiments were conducted in a "two-dimensional'

wave tank, they were restricted to large relative depths  h = 2,3

and 4! and small values of the relative size parameter  a<1.0!.



9 ~ DISCUSSION OF RESULTS

Accuracy of Numerical Results and Ef feet of Grid Size

As previously indicated, the numerical results presented in

this dissertation were obtained with the grid size parameter N set

equal to 5. Since the accuracy obviously depends on the grid size,

the question naturally arises as to what constitutes a proper grid

size. Some ideas on this question have been given by previous

investigators such as Kim �965!, Garrison �969!, etc. As the

parameter a increases, the fineness of the grid size must be in-

creased in order to obtain the same degree of accuracy in the final

results. This is because some of the terms of the kernel, BG/3n,

of the integral equation and the Green's function, G, oscillate in

rl with a wave length proportional to 2m/a. Thus in order for the

numerical integrations to he accurate, the subdivisions AP hg=s

must be kept small in comparison to 2'/a. That is

Tl 2rr
s

2N a

Therefore for each grid size parameter N there is a value of a above

which the numerical results become inaccurate. Increasing the grid

size merely increases this value of a. However this process cannot

be continued indefinitely. The numerical scheme eventually breaks

down.



Obviously the computer time and the cost of computation in-

crease with N. So, in order to check the effect of grid size, the

parameter N was changed to N = 4 and N = 6, respectively and

numerical results were obtained in a few cases over a range of a,

keeping h and c constant. A comparison of the final results is

shown in Table l. Using the results from the finest grid as the

standard, the percentage deviations from it in the other two cases

are also shown.

The comparison shows that for values of a up to 3.39, all but

one of the results obtained with the coarser grid of N = 5 are

within 1% of those given by the grid of N = 6. The exception is

the vertical force coefficient, f, which deviates less than 3.5%
y

for a = 3.39. Even the results obtained with the coarsest grid of

N = 4 are within 2.5%, for values of a up to 2.29. In general the

vertical force coefficient f is more sensitive to grid size varia-

tion than the horizontal force coefficient or moment coefficient.

This is natural since some of the errors tend to cancel out in the

case of f and m» whereas they all add up for f . The comparisonX z''

shown in Table 1 is for the relative depth, h = 1.25. Tn general

we may expect the effect of grid size variation to decrease as the

relative depth h increases, since diffraction effects become

smaller. In view of the preceding it may be concluded that the

results obtained in this dissertation with a grid size of N = 5

are of accuracy approximately comparable to those obtained with a
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Table l. Effect of Grid Size on Ac cur acy o f Res u its

c = 0.75 h = 1.25

m
z

-1.5451

-1.5451

-1.5451

-3.. 5451

-3. 1396

-3. 1395

0. 34

� 1.5450-l.5450 -3. 1391

-1. 5016

-1.5016
-I . 5016

-1.5016

-3. 1273

-3.1266

0. 60

� 3. 1254 -1. 5015-1. 5015

-1. 436 7

-1.4367

-l. 4367

-l. 4367

-3.0527

-3.0505

1. 07

-l. 4367-3.0466-I. 4367

-1.4539

-1.4544

-I. 4539

-1.4544

-2.9602

-2.9569

2. 29

-1 ~ 4557-2. 9497-l. 4557

-3.0488

-3.0457

-1.5028

-1.5035

-l. 5028

-1.5035

3. 39

-1. 5060-1. 5060 -3.0378

-1.5401

� l. 5410

-1. 5401

� 1.5410
-3. 1011

-3.0983

4.52

<Results for N = 6 are taken as the standard in computing the
percentage deviations.

0. 73809

0.73802

-0.0]%*

0.73780

-0.04%

1. 08270

1.08260

-0.01%

1.08222
-0.04%

1,12268

1. 12 265

0%

l. I 2244

-0,02%

0.39523

0.39546

0.06%

0. 39564

0. 10%

0.10050

0. 10079

0.29/

0. 10128

0.78%

0.01768

0. 01796

1.58%

2.95345

2.96902

0. 53%

2.99 799

1. 51%

2, 56686

2.58108

0.55%

2.60708

l. 57%

l. 72583

1.73548

0.56%

1.75319

l. 59%

0. 36547

0. 36847

0. 82%

0.37373

2. 26%

0. 09031

0.09325

3.26%

0.09839

8.95%

0.02088

0.02352

12.64%

0. 16546

0. 1662 7

0.49/

0. 16776

I. 39/

0.24747

0.24862

0.46%

0 ~ 25070

l. 31%

0. 27072

0. 27176

0. 38%

0. 27365

1. 08%

0.12442

0.12453

0.09%

0.12461

0.15%

0. 04579

0. 04577

-0.04%

0.04561
-0. 39/

0.01382

0.01383

0 ~ 07%
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finer grid size of N = 6 for values of a upto 3.39. Even the coarse

grid of N = 4 appears to furnish results that are of the same order

of accuracy, for values of a upto 2.29, which might suffice for

engineering purposes. Finally, it is noted that Kim �965!, using

a similar numerical procedure, obtained quite accurate results for

an ellipsoid for values of a upto 4, with a grid size of N = 6.

The majority of the numerical results presented in this

dissertation were obtained on the IBM 360/65 computer system of

Texas A&M University. The total computer time required for one

run  i.e., for given values of h, c and a! for the diffraction

problem for the grid size of N = 5 increased as the relative size

a decreased. This is because of the numerical procedure used in

computing the infinite integrals. It was also observed that the

computer time varied depending on the relative depth h, being

greater for smaller values of h. The time was of the order of

3 to 6 minutes for a = 3.39 and 8 to 20 minutes for a = 0.19.

The computations were in general performed setting a = 0.19,

0.34, 0.60, 1.07, 1.91 and 3.39. The reason for the choice was

that the points were logarithmically spaced. Additional points

were added as necessary in the ranges where the results varied

rapidly. The data extended over the range of a values up to 4 and

in some cases even up to higher a, which is the range of practical

engineering interest. Four different geometries were considered.

These included the hemisphere  c = I.O!, two oblate spheroids
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 c = 0.5 and 0.75! and one prolate spheroid  c = 2.0!. Because

of limitations on available computer time, the hemisphere was

tested over a wide range of h, from 1.25 to 4. Results were

obtained for the oblate spheroids for h = 1, 1.25 and 1.5 only,

and for the prolate spheroid for h 2.5, 3 and 4 only. These

cover the range of practical interest.

Haskind's Relations and Energy Check

As previously indicated, important checks on the numerical

technique and the final results can be made by using Haskind's

relations and the energy check which are developed in Appendix C.

The former verifies the solution for the diffraction problem and

the latter the solution for the radiation problem itself. These

checks were applied over a range of values of a, for given condi-

tions of c and h. The results are shown in Tables 2 and 3,

respectively,

The comparison in Table 2 shows that the results obtained

directly from the numerical solution of the diffraction problem do

not differ by more than 0.5X in most cases from those obtained

indirectly from the solution of the radiation problem, hy using

Haskind's relations. The only exceptions are the results correspond-

ing to f for large a. These may be explained in terms of what
y

was noted earlier about f . The general agreement is gratifying,

since the diffraction and radiation problems are solved separately,
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and the accuracy of the numerical results in general is expected to

be no better than-+ 1%.

Table 3 shows that for the radiation problem the damping coef-

ficients obtained directly from the near field solution do not

differ by more than 0.5% from those obtained From the far field

solution by using the energy check. The only exception is the

damping coefficient N22  for heave! for a = 2.29. This is in

keeping with the trends observed previously for f . The comparison

of Table 3 is especially encouraging and provides confidence in

the numerical scheme used, since the far field solution was

obtained by using an asymptotic form of the Green's function and

not that used for the near field.

pressure Distribution

For design purposes, it is important to know the pressure

distribution on the body for various phase ang1es of the incident

wave. The computer program gives the pressure amplitude coefficient

p and the phase shift h at various nodal points . With these data,
P

the instantaneous pressure distribution over the body can be easily

calculated corresponding to any instant of time during the wave

cycle ~

Since the body is three-dimensional, there is no convenient

way of representing the values of p and 6 obtained from the
P

program. Even presentation of the data in the form of tables takes



considerable space. Therefore it was decided to give here only a

sampling of the pressure data and indicate briefly the trends.

As part of the computer program, the instantaneous pressure

coefficients, H' x,y,z;t!, were calculated at the nodal points

corresponding to the instants of maximum horizontal force and

maximum vertical force, respectively. Using this information,

contours of equal values of ji' x,y,z;t! were plotted, showing the

body in plan view. Such contours are shown in figures 8-11 for the

case of. n hemisphere  c = 1.0! for h = 1.5. The first two figures

correspond to the condition of maximum horizontal force and the

next two to the condition of maximum vertical force. The radial

straight lines and the circles represent ellipsoidal polar co-

ordinates, as shown in figure 8, the former corresponding to

azimuth angles n and the latter to vertical angles $. Note that

the x-axis represents the direction of advance of the incident wave.

Before going into the details of the results obtained from

diffraction theory for the case of maximum horizontal force, it is

interesting to consider the effect of the incident wave alone,

disregarding scatter, since it is quite instructive. The maximum

hori zontal force due to the incident wave. occurs when the hori-

zontal particle acceleration in the x-direction i.s maximum at the

center of the obj ect, i.e., when o t = -~r/2 a=cording to the

notation of �.5!, Corresponding to this condition, the crest

portion of the wave is overhead of that half of the object for
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Figure 8. Contours of pressure coefficient at instant
of maximum horizontal force for

c=l.0, h=l.5 and a=l.07.



Figure 9. Contours of pressure "oef ficic nt at instant
of maximum horizcntol force ';or

c=1.0, h=l.5 < rIR a=2.2!!.
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which x < 0, and the trough portion is overhead of the other half

for which x > 0. Therefore the pressure distribution is asymmetric

about the z-axis. However, from linear wave theory, the magnitudes

of the pressures are symmetric, The results of diffraction theory,

as presented in figures 8 and 9, are considered next. These

figures correspond to a = 1.07 and 2.29, respectively. The

pressure distribution is asymmetric about the z-axis, as expected.

While the magnitudes of the pressures are roughly symmetric about

the z-axis for a = 1.07, this is however not the situation for

a = 2.29. The reason cauld be the greater diffraction effects

en.countered in the latter case ~ The two pressure distributions

look different partly because, compared to the diameter of the

hemisphere, the length of the incident wave is shorter in the

latter case,

The condi,tion of maximum vertical force is taken up next. If

the incident wave alone were considered, then the vertical force

is maximum when the trough portion of the incident wave is directly

above the object, such that the pressures on the surface of the

object are generally negative and symmetric about the z-axis.

Considering now the results of diffraction theory, as presented

in figures 10 and ll, and noting that they correspond to different

values of a, it is observed that the pressures are indeed almost

symmetric about. the z-axis and in general negative in bath cases.

The maximum negative pressure ccurs at the highest point on the
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Figure l0. Contours of pressure coefficient at instant
of maximum vertical force for

c=l.O, h=l.5 and a=l.07.



Figure ll. Contours of pressure coefficient at instant
of maximum vertical force for

c=l.O, h=l.5 and a=2.29.
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surface of the obgect. Again, some of the differences between

figures 10 and ll arise because, relative to the diameter of the

hemisphere, the wave length is shorter in the latter case.

The numerical results from diffraction theory for the hori-

zontal and vertical force coefficients and the moment coefficient

are presented next in figures 12-29. For a hemisphere, the

asymptotic solution and the results of the experiments described

in Section 8 are also shown for comparison. For a given h, the

results obtained for different values of c are presented in the

same figure. In all the figures, solid lines represent diffrac-

tion theory, broken lines the asymptotic solution for a hemisphere

and circles experimental data for a hemisphere.

Horizontal Force Coefficient, f
X

The results for the horizontal force coefficient are presented

in figures 12-18. The figures correspond to the cases h 1.0,

1.25, 1.5, 2.0, 2.5, 3.0 and 4.0, respectively. The results of the

asymptotic solution presented in these figures are obtained fram

 8.5!, by assuming therein a value of C = 0.5, which corresponds

to the case of infinite relative depth h. Note tha for the

assumed valve of C equation  8.5! reduces to  8.3! .

LJe consider the results from diffraction theory first. Zn

general the curves for all values of c follow the same trend.

They increase with a at first, reach a maximum and then decree
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rapidly with a. They all exhibit the same asymptotic behaviour for

very small a and for large a. They appear to folio~ a straight

line variation for small a, the straight lines having approximately

the same slope. The general trends observed may be explained

as follows. For a hemisphere it was noted in Section 8 that for

small a, f ~ ma, a function represented by a straight line on a
x

Dog-log plot. As for the behaviour at large a, note that if a were

increased, keeping other parameters constant, this means the wave-

length is decreasing relative to the liquid depth and the size

of the object. Obviously, under such conditions the effect of the

wave at the free surface decreases at the bottom where the object

is located and so does f until they both vani sh f or a

For a given h, the curves for larger relative heights, c, are

above those for smaller values of c. This is to be expected since;

for a given a, the spheroid with a larger value of c has more

vertical projected area to offer and, other parameters being

equal, is subjected to a greater horizontal force.

It may be noted from the figures that in general f increases

as the relative depth h decreases. This is as expected because

the free surface is closer to the object for smaller h and there-

fore the dynamic pressures are greater.

We now compare the asymptotic solution  8.5! with the results

from diffraction theory for a hemisphere. In general the two sets

of curves follow the same trends. Moreover, they coincide over the



entire range of a considered, for h = 3 and 4. They are quite

close even for h = 2. This is very encouraging. The difference

between the two solutions increases as the reIative depth h de-

creases, being the maximum for h = 1.25. This is expected since

the asymptotic solution assumes C = 0,5 which corresponds to
m

inf inite re lative depth,

Me note that in the case of the smaller h, for small values of

a, the results of equation  8.5! are generally below the results of

diffraction theory. In such cases the agreement between the

asymptotic solution and diffraction theory can be improved by

suitably increasing the value of the added mass coefficient, C

For example, in figure 13, the results of  8.5! can be made to

agree with diffraction theory for values of a up to approximately

0.7, by increasing the value of C used in the equation to 0.7,
m

There is a sound basis for this suggestion. For small values of

a, the free surface behaves like a rigid plane boundary. For

small h, since this boundary is relatively close to the body, the

added mass coefficient, according to potential flow theory, is

greater than if the boundary were absent or at an infinite distance.

In figures 13 and 14, for large values of a, the results of

the asymptotic solution are higher than those from dif fraction

theory. The difference increases with a and is quite large. This

is to be expected since the asymptotic solution is valid only for



small values of a. Thus in this range of a, the diffraction effects

neglected in the asymptotic solution become significant.

A comparison of the experimental results for a hemisphere with

the asymptotic solution and diffraction theory in figures 15, 17

and 18 shows good agreement in general. The agreement improves

with the relative depth, as one would naturally expect.

Vertical Force Coefficient, f

The numerical results for the vertical force coefficient as

well as the asymptotic solution  8.4! and the experimental results

for a hemisphere are presented in figures 19-25. These figures

correspond to relative depths ranging from 1.0 to 4.0, as before.

Ne consider the results of diffraction theory first. In

general the curves for all c tend to ~ for a ~ 0. This is indeed

the trend predicted by the asymptotic solution  8.4! for c = l.

The value of vr represents the effect of the hydrostatic pressures

due to the presence of the wave crest or trough of the incident

wave alone. As a increases, f decreases first gradually and later

rapidly, This trend is again predicted by  8.4! for a hemisphere,

as evidenced by the figures.

In general, for the same relative depth h, the vertical force

coefficient increases with the relative height c. Also, the

difference between the curves for two different values of c in-

creases in most cases with the relative size a. This may be
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explained as follows. The major portion of the vertical force comes

from the pressures near the top of the half spheroid. In the case

of a spheroid with a larger relative height, the points near the

top are closer to the free surface and therefore experience greater

dynamic pressures. Hence the total vertical force on a spheroid

with a larger relative height is greater than that having a small

value of c, even though the two have the same horizontal projected

area.

It may be noted from the figures that the vertical force

coefficient generally increases as the relative depth h decreases.

As in the case of f , this may be explained in terms of the
X

proximity af the free surface.

We next compare the asymptotic solution  8.4! with diffraction

theory for a hemisphere. As in the case of f , the two coincide
x

over the whole range of a, for h = 3 and 4. As h is reduced, they

begin to diverge, the difference being greatest for h = 1.25.

This is to be expected since the asymptotic solution is valid only

for large values of h. In general the asymptotic solution gives

results that are lower than those f rom dif fraction theory for small

values of a, and higher than those from diffraction theory for

large values of a. Even for the smaller relative depths, the

agreement is quite good for small values of a up to approximately

a = 1.0. This is unlike the case for f . It may be explained by
x

the fact that there is no added mass coefficient in  8.4! .
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In the case of small h, for large values of a, the asymptotic

solution for f differs from diffraction theory by an order of

magnitude sometimes, considering that the scales of the plots are

logarithmic. In general if f igures 13-15 for the horizontal force

coefficient are compared with the corresponding figures 20-22

for the vertical force coefficient in the range of large a, it. is

observed that the difference between the asymptotic solution and

the exact theory is larger for the vertical force coefficient.

This may be explained by the fact that the major portion of the

horizontal force arises due to pressures at the bottom of the

hemisphere, whereas the pressures at the top of the hemisphere

contribute most of the vertical force. Since the pressures at the

top are more strongly influenced by free surface effects, the

vertical force coefficient shows more diffraction effects. Thus

diffraction effects which are neglected in the asymptotic solution

become very important in the case of f for large values of a,

when the relative depth is small.

A comparison of the experimental results for a hemisphere with

the asymptotic solution and diffraction theory in figures 22, 24

and 25 shows that the agreement is not as good as for f . The
X

reason is not known. However it is noted that unlike the hori-

zontal force, the vertical force was measured in the experiments

by using the readings of the pressure transducer as well as the
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strain gages. It is therefore believed that this more complicated

arrangement led to greater experimental errors in the case of f

Moment Coefficient, z'

The results for the moment coefficient obtained from dif frac-

tion theory are shown in figures 26-29. These correspond to

relative depths of h = 1.0, 1.25, 1.5, 2.5, 3.0 and 4.0. We note

that the moment coefficients for c = 2.0 for the relative depths

of h = 2.5, 3.0 and 4.0 are all plotted on the same figure, namely

figure 29. As previously indicated, the moment coefficient is

zero for a hemisphere  c = 1.0!.

In general m , follows the same trend with variation of a, asz'

f did. Thus it i~creases at first, reaches a peak and then
x

decreases fairly rapidly. This is not surprising since the hori-

zontal force and the moment about the z'-axis have their maximum

values simultaneously, and are both the result of the same pressure

distribution on the object. Note also that, for the same c, the

peak of the m , curve moves to the left as the relative depth h isz'

increased. The same trend was observed for f
X

If we consider the effect of variation of c, for a given h, it

is apparent from the figures that, in the range c < 1.0, the

moment coeff icient decreases as c increases until m, is zero forz'

c = 1.0. On the other hand, in the range c > 1.0, the moment
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coefficient increases with c. Such a peculiar trend results partly,

2if not wholly, due to a factor ~l � c ~ in the expression for mz'

The figures show that the moment coeffici.ent decreases as the

relative depth in. creases. This is ags.in in keeping with the trend

observed for f and results for the same reasons.
X

Phase Shifts, 6 , 6 and 6x' y m

We now consider the phase shifts of the horizontal and verti�

cal forces and the moment, obtained from diffraction theory.

These results are pxesented in figures 30-33. The figures show

the results for c = 0.5, 0.75, 1.0 and 2.0, xespectively. For

a given c> the results for various relative depths are shown in

the same figure.

It must be ~oted that in the general case of a spheroid, the

phase shift for the horizontal force, 6 , is exactly identical
X

to that for the moment, 6

For a ~ 0, the phase shifts 6 and 6 tend to the limit -rr/2
X m

and the phase shift 6 to the limit � m, which values may be predicted

by considering the incident wave alone. This means that the hori-

zontal force and the moment lag the incident wave;t the origin by

~/2, and are in phase with the horizontal particle acceleration due

to the wave. Similarly the vertical force lags the incident wave

at the origin by v and its maximum value occurs when the wave trough

is directly above the z' � axis.
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In general the magnitudes of the phase shifts decrease as a

increases, up to a point. Thereafter they increase with a, but not

indefinitely, They may be expected to fluctuate with a in the

range of higher values of a.

The figures show that for a given. spheroid, the phase shifts

for large relative depths agree closely with the values of -z/2 and

throughout the range of a considered. Thus in the case of a

hemisphere, the curves for 6 and 6 are almost horizontal straight
X

lines for h = 3. The results for h = 4 were not presented for

this case since they could not be distinguished from the values of

-~/2 and -x. In general as the relative depth decreases, the devia-

tion of the phase shifts from the asymptotic values increases. It

can be seen that it is quite large for h = 1.0 corresponding to

c = 0.75, and for h = 1.25 corresponding to c = 1.0. These

deviations can be at. tributed to diffraction effects, and naturally

increase as the relative depth h is decreased.

If the phase shift curves for different relative heights, c,

are compared for the same h, it is observed that the results for

smaller values af c show less diffraction effects. This is to be

expected since, for lesser c values, the spheroids are more deeply

submerged and therefore less influenced by the free surface.
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10. CONCLUSIONS

In this dissertation the diffraction problem which involves

the action of small amplitude surface gravity waves on a rigid

submerged object in finite depth of water was formulated by using

the Green's function approach. Simultaneously, the radiation

problem of a submerged object oscillating in otherwise still water

was also formulated in. order to check the solution for the diffrac-

tion problem. The detailed theory and numerical scheme were

worked out for a semiellipsoid. Finally, in order to reduce the

computation time, numerical results were obtained only for the case

of a half spheroid, which was circular in plan..

The numerical results presented in this dissertation were

checked in different ways for their validity and accuracy. These

checks included the use of Haskind's relations for the diffraction

problem, the energy check for the radiation problem and comparison,

in the case of a hemisphere, with results from an asymptotic solu-

tion, valid for large relative depths and small relative sizes of

object. For a hemisphere, comparisons were also made with experi-

mental data obtained in a "two-dimensional" wave channel. All of

these checks and comparisons were successful and therefore it

appears, on the basis of the limited evidence available, that the

present method yields accurate results.
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On the basis of the dimensionless results presented in Section

and the discussion that followed, the following conclusions appear

justified for a half spheroid:

Horizontal Force Coefficient, f
X

1. The horizontal force coefficient increases with the relative

size, a, at first, reaches a peak and later decreases

rapidly as a increases.

2. It increases with the relative height of the spheroid, c.

3. It increases as the relative depth of water, h, is decreased.

4. The asymptotic solution  8.5! coincides with diffraction

theory over the entire range of a tested for large relative

depths. Even in the case of smaller relative depths, the

agreement can be improved for small relative sizes, a, by

increasing the added mass coefficient, C , suitably to

account for the effect due to the free surface.

5. The experimental results available far comparison agree

excellently with diffraction theory.

Vertical Force Coefficient, f

1. The vertical force coefficient starts with a value of r

corresponding to zero relative size and decreases at

first slowly and later rapidly, as a is increased.

2. It increases with the relative height, c, of the spheroid.
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3. It increases with a decrease in the relative depth, h,

4. The asymptotic solution  8.4! for a hemisphere coincides

with dif fract.ion theory over the entire range of the rela-

tive size tested, for large relative depths, Even for

small relative depths, the agreement is quite good for

small value.. of a up to about L.0 approximately.

5. In generaL the vertical force coefficient shows more dif-

fraction effects than the horizontal force coefficient.

Moment Coefficient, mz'

l. The moment coefficient shows the same general trend of

variation with relative size, a, as the horizontal force

coefficient.

2. It decreases with an increase in the relative height, c,

in the range c < 1 and increases with c in the range c > l.

3. It increases as the relative depth, h, is decreased.

Phase Shifts, 6 , 6 and 6x' y m

l. The phase shifts for the horizontal force and the moment

are exactly equal.

2. For a ~ 0, the phase shifts 6 and 6 approach the asyrp-
x m

totic value of -m/2 and 6 approaches -vr.

3. The magnitudes of the phase shifts generally decrease at

first as the relative size increases, and later increase

with a in the range of relative sizes tested.
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For large relative depths, the magnitudes of the phase

shifts are equal to the asymptotic values of v/2 and

over the entire range of a, and as the relative depth is

decreased, they deviate more and more from these values.

5. For a given relative depth, h, the phase shi f ts deviate

more f rom the asymptotic values, as the relative height,

c, is increased.

Finally it is noted that diffraction effects are quite signifi-

cant in the range of small relative depths of water and large rela-

tive sizes, In this range diffraction theory comes to its own and

becomes necessary. Since some of the engineering structures con-

templated for the near future will be both relatively large and

built in shallow waters, it is recommended that diffraction theory

be used in this range inspite of its greater complexity,

Recommendations for Future Research

1. Numerical results may be obtained for the general case of

a semiellipsoid, by using the theory presented up to

Section 7. In order to do this within reasonable computer

time, the form of the Green's function given in �.19!

may be used only when the source  <,~,C! is close to the

point  x,y,z!, For other cases, the series form of the

Green's function given in  C.26! in Appendix C may be

employed, since it converges more rapidly and takes less

computer time.
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2. The work reported here may be extended to the two-

dimensional case of semielliptic cylinders resting in

finite depth of water and acted on by waves.
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APPENDIX A

DERIVATION OF THE FUNCTIONS, h, x,y,z!

In this section the functions h. used in connection with the
j

derived.

Consider the linear motion of the rigid object in surge.

From �.2-a!, for g=l, the velocity of the surface normal to

itself is given by

-0 -iot
iX ~ n=RQ.[-ioKne]

1 x
 A. 1!

Application of the kinematic boundary condition on the sur-

face S gives

ac
1 -iot

=Re. [-iaX n e ]
1 x

I3n
 A. 2!

Substituting for 4 from �.3! and simplifying yields

3V
1 -0

�  x,y,z! = � i.o X n
1 x

Bn
 A. 3!

or

h  x,y,z! = � io X n on S
x

 A. 4!

kinematic condition on the surface of. the oscillating abject are
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The functions h and h can be derived similarly.

Consider next the angular motion of the ob! ect in roll. From

�.2-b!, for ]=4, the velocity of the surface is given by

e x r. � i' [Rv -ioR e !] x [i'x' + j'y' + k'z']
4

= [Re.  -io e e ! ] [-g 'z' + k'y'] .
4

 A.S!

 i' e x r! - n = [RQ. -i@8 e ! ] [y'n -z'n ]
4.

 A. 6!

Noting that y' y+h and z' z, and applying the. kinematic

boundary condition on S, we have

d4

[Re  fa6 e !   y+h! n � z n ]]
4 z

dn

 A. 7!

Substituting for 4 from �.3! and simplifying gives

8V

 x,y,z! � ioB [ y+h! n - z n ]
z

3n

 A. S!

oz

h4 x,y,z! = � ice [ y+h! n � z n ]
z y

 A.9!

The functions h and h are similarly obtained.

The velocity of the surface normal to itself is hence given by
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EFFECT OF THE SINGULARITY

In this appendix, it is shown that the extra term -f.  x,y,z!/2

in �.26! arises at a point  x,y,z! on the surface because of the

singularity located there.

In view of the representation �.17!, at any point  x,y,z!

on the surface S

 x,y, z! = � 4 f.  $, n, <! G x,y,z,  ,n,g! dS .  B, 1!

However as the point  g,q,q! approaches  x,y,z!, the normal deriva-

tive of the Green's function becomes singular because of the 1/R

term so that the region of the surface S surrounding the point

 x,y,z! must be treated in a special way. Therefore, for carry-

ing out the surface integration in  B.l! the surface S is divided

into two parts. One of these is a small area E, which is bounded

by the intersection of S and the surface of an imaginary circular

cylinder of radius r, the cylinder's axis being normal to S at

 x,y,z! . The area Z is shown in figure 34. The "econd part is

given by the remainder of the surface S. Therefore  B.l! may

be rewritten as

du,
~ x,y, z! = � f .    , n, R.! � G x,y, z; g,q, q! dS
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 a. 2!1  g,q,g! � G x,y,z; ~,y!, 0! dS3

S-Z

Writing G in the form given in �.24! and noting that

tion as Z, or equivalently r, tends to zero to obtain

f.  x,y,z!
3li ~ � Gz x,y,z; ,n,t! dS+ lim.
Bn

Z~Q

 a. 3!
BG

f   yn,Z! �  x,y z.E n 6! dsZ P' 4" S-Z

Assumi.ng the point  x,y,z! lies along the normal at an in-

f rom the sur f ace S as indicated in f igurefiuitesimal distance c rom

34 and noting that for small r the surface area Z may be con-y

sidered to be plane, the first integral in ,8.3, can be written as

f. x.y,z!
liz.

2 1/2
dr

4z !z

f  ,q,g! is a wel � e ave1-b h d function we may take the limiting condi-
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f <'y"! a rlim. ~ [  z + z ! � z ja.L 0
r ~0

0
v+0

 x,y,z!

2  a-4!

Further since BG*/ bn occurring in the second integral of  8.3! is

regular, that integral vanishes in the limd.t as E ~ 0, giving the

desired result

Bu f  x,y,s!
~ x,y,z! - � ~ + � 2   ,n, g! �  x,y,z; ,n,r! dd

�. 26!

Note that in �.26! the surface integration is to be carried out

over the surface of the ob]ect with the singularity  x,y,z!

excluded.

 x,y, z!
lim.

r ~0
0

t~0

'C

2 1/2
 r0+6!
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APPENDIX C

HASKIND'S RELATIONS AND ENERGY CHECK

Haskind's Relations

In the case of the diffraction problem, the dimensionless

wave force and moment components, F', t!, on an object of arbitrary
i

shape are given by �.18! . Substituting for the functions

h.  x,y,z! from �.25-D!, equation �.18! may be rewritten as
i

3U.

F! t! - Re. a  u +u ! > dS e
j.

i 1,2,3,...,6,

where u. are the radiation potentials.
i

We now eliminate the scatter potential u from  C.l! by

applying Green's theorem to the functions u7 and u, in the region
i

R, as shown in figure 3 in Section 3. Since both u and u.
i

satisfy the Laplace equation in the region

r Bu Bu

 u. � - u ! dS = 0
S+S +S +S i dn 7 8n

f b

 C.2!

Also since both u and u, satisfy the free surface and bottom
i

boundary conditions, and the radiation condition at infinity, it

can be shown as in Section 3 that the contributions to the surface

integral in  C.2! from the surfaces S, S and S vanish. Further,

from �.25 � D! and �.4!
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au
7 on S ~

 }n 3n

Hence equation  C.2! yields the result

uj � dS = � u dS

which may be rewritten as

 u+u! dS = g
7 0 3n

h f ce integral on the right hand sideWe next replace t e sur ace i

a 1 in Green's theorem toof  C.5! by an integral on S, by app y g

t ious,

3u Buo
 uo ~ � u ~ ! dS = 0  CD 6!

Hence

3u. 3u

i i  � � ! dS = �  up � � u, 3 ! dS.  C. 7! IS 0 8 i Bn'I

is the direction of the normal to aSince by convention n s

e fluid 3/Bn = -3/Br on S . Moreover,surface drawn into the u

�.25-E! for u , we can show thatusing the radiation condition ~ . � o

u and u in the region R. Since both uou and u. satisfy the
0 i

d he free surface and bottom boundary condi-Laplace equation an t e ree
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 C. 8!

Since x = r cos, c6 it an be shown from the expression for u given

in �. 4! that

 c.9!

There fore

r 3u 3u

! dS = � u u. [ia l-cos 6!

 C ~ 10!

Substituting for u and u. an the right hand side of  C.10!

r 'd6 dy

iar cos6
e  C.11!

3u
=iau. � � � ons ~

3r i 2 r

3U

ia u cos 6
3r 0

� � ] ds1

2r

-1/2 iar�+cos 6! <1
r e

29

1 sinh 2ah h] iar
2 ~ 4 +2

a cosh ah

2m
A, �! r t � � iar�-cas 6! ]r

-1/2 1
i 2

6=0
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iar cos 9
Since ~ and e is a fluctuating quantity,

2' A  9!
r e

i -l/2 iar cos 9
de=0 onS

B=o CO  C. 12!

We next rewrite the remaining part of the original integral as

i i i
2m

- 9~0

27r1/2 iar A  9! �-cos 9! -iar�-cos 9! de
i

~ 9 0

 C.13!

A  9! �-cos 0! -i ar�-cos 9! de2'

e=o

  � ! ! e [A  9! �-cos 9! ]2~ 1/2 I -~i/4
ar i

+ 6 s "' t~, e!  z-cps e!] I I
e-0

2�~	/2 i -' � 2 ar!   !
ar

 C.14!

Hence, after some simplification, we can show that

Since ar» 1, the solution to the integral on the right hand

side of  C.13! may be obtained by the method of stationary phase

 refer, for example, Stoker �9573, Sec. 6.5 and 6.8!. Thus
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r Q 2' 1/2 1
cosh ah

sinh 2ah + h~ i~/4
2a

 C.15!

From  C.I.!,  C.5!,  C.7! and  C.15!, simplifying, ~e have

1/21 �~a! ~sinh 2ah j i � � crt!
2 2a i

cosh ah

F' t! = Re
i

Taking the modulus on both sides gives the desired result

1/2
�" a! [sinh 2ah + h] ~A.  ~!, i=-l,2,3,...,6

i 2 2a
cosh ah

 C. 17!

Fquatian  C. 17! really represents six di ff erent equations, corres-

ponding to the different values of the index i, These equations

are knorsn as "flaskind's relations�." They relate the force and

moment components in the case of the diffraction problem to the

asymptotic velocity potentials for the corresponding radiation

problem, They are very valuable because the asymptotic potentials

mentioned are much easier to obtain than the "near field" scat ter

potential.

Energy Check

In the case of the radiation problem, the dimensional force  or

moment! component, in the i-th direction, on the oscillating object

due to oscillations in the i-th mode may be obtained from �, 12! by



setting j=i. The forces and moments exerted by the body on the

fluid are equal and opposite to these components so that the energy,

E, transmitted by the body to the surrounding fluid over one

period is given by

 C. 18!

where X  t! = X  t!/a for i=1,2,3 and X,  t! = 6.  t! for i=4,5,6 ~

In  C.18! the coefficient a is to be used for a force  i=1,2,3!

and the factor 1 for a moment  i=4,5,6! . Qn substituting for

P.,  t! from �.12!, for the damping coefficient N . from �.15!
ii ii

and �.16!, and for X,  t! from �. 2!, and simplifying and carrying
i

out the int e grat ion, equat ion  C. 18! may be rewritte~ as

2 -5 o2
E. = ~pa a X. N i=1,2,3,...,6

i i

If we consider the fluid region R shown in figure 3, then by

conservation of energy, since the energy in the interior of the

region does not chanpe, the above input of energy must be equal

to the energy flux across the surface S over one period due to

outgoinp progressive waves.

-o
If rt. is the amplitude of the outgoing progressive waves at

i

S due to the oscillation of the body in the i-th mode, then by

applying the dynamic free surface boundary condition, we can relate

-0
to the asymptotic velocity potential u.. Thus

i



q.  r,e! = a X. tanh kh! a[u.  r,9,0! [
i i 1

 C. 20!

The energy, dK., transmitted across S per unit length of crest
i CO

over one period is given from linear wave theory as

2
� o

dz. =~<i [1+ ]
s inh 2kh

 C, 21!

Therefore the total energy transmitted across S over one period is

given by

27r 2~pL 1 + 2kh -o
i 4 i

s inh 2kh 0=0
 C. 22!

Substituting for n. from  C.20!, and simplifying,
1.

4 2�
a o o r

g i
E. = lim. - � 1+

pL 2kh
i 4

sinh 2kh

[ u.  r, e,o! [ de, i=1, 2,3,...,6
0 1

 C. 23!

N.. = lim' 2 tanh ah! [1 ' h 2 h1 2ah

ii 2 s inh 2ah
r-+m

r 2Tr
~u.  r,0,0! dS, i=].,2,3,...,6

i
e=o

 C. 24!

By comparing  C.19! and  C.23!, a relation may be written for

the damping coefficients N . in terms of the asymptotic velocity
ii

potentials u.. Thus, after simplification, we have the relationship
1
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Substituting for u. from the radiation condition �.25-E!, we have
i

the alternate form

27r

 C.25!i=1,2,3,...,6

Equation  C.24! or  C.25! represents the energy check for the

radiation problem. Tt relates the damping coefficients N . for the
ii

object  which are dependent on the near field characteristics of

the problem! to the asymptotic velocity potentials u, which are
1.

dependent on the far field characteristics of the problem.

We note also a certain similarity in the relations  C.17!

and  C.25!. Thus under certain conditions, it is possible to

relate f.' directly to N .. Newman �962! obtained such relations
I ii

for the case of a submerged spheroid.

Numerical Evaluation of Haskind's Relations and Energy Check for a

Half Spheroid

For a spheroid symmetric about the vertical axis, the only

cases of interest are those pertaining to i=1,2 and 6.

The left hand sides of  C.17! and  C.24! may be obtained from

the numerical solution to the corresponding diffraction and radia-

tion problems by numericaL quadrature on the surface of the object,

using the relations given in Section 4. Ps for the right hand
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2 2

G x,y,z;E,n,v!
2~ v -a !

2
cosh[a y+h!] cosh[a rI+h!]

a h-v h+v

2 2
 u +v !

[Y  ar ! � i 5  arl!] + 4~ 2 20 1 0 h+u h-u
k

 C.26!cos[u  y+h!] cos[u  ~+h!] <  lkrl!
k

where p are the positive real roots of the equation
k

u tan ph! + v = 0

and Y and K are respectivelv the Bessel function, and modifie
0 0

Bessel function, of the second kind of order zero.

For r -> ~ considerable simplification is possible in the
1

above expression for G and for y=0, the asymptotic form may be

writ ten as

sides, these involve the asymptotic velocity potentials u . Thesei'

potentials are computed numerically from �.17!. For this purpose

the distribution functions f. obtained from the numerical solution
i

of the radiation problem are used. As for the Green's function G,

since the form given in �.19! is quite complicated, it is natural

to look for a simpler asymptotic form valid for large r . An in-

finite series form for the Green's function is given by John �950!

and when made dimensionless in our variables appears as follows:
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2 2

G x,0,z; F.,n,C! � � 2 2 cosh ah cosh!a rl+h! ]2mi u -a !

r ~ a h-v her
1

2 1/2 i  arj � / !
e 1

~arl
 C. 27!

Substituting for G from  C.27!, we may write the asymptotic

potential u. as
i

i 2 l/2  v -a ! cosh ah
2 2

a h-v h+u

-1/2 i arl � <! dS .  C.28!
s e

i

r = r-p cos  8-8!
1 l

 C. 29!

where p =  g +g ! and 8 has the usual notation.
2 2 1/2

Figure 35. Plan view of the spheroid.

Since r is large, it may be replaced by r and taken outside

the integral. Noreover, we note from figure 35 that for large r
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Therefore u may be rewritten as

-1/2  u -a ! cosh ah � 1/2 i ar � � !2 2

u,  r, B,A! = � i�@a!
2 2

r e
1

a h-v h+v

 c. 30!

Once f  F�q, g! is known, u  r, 8,0! is computed for any  r, 0!

by numerical integration over the surface, S, of the object, using

also the symmetry of the distribution function.

As far as Haskind's relations  C.17! are concerned, we make

use of the radiation condition �.2S-K! to obtain A.  m!, once

u,  r,m,0! is known. Thus
i

A,  r! = u.  r,>,0! r e
l/2 -iar

i i
 c.ai!

Hence

2

a h-v h+v

cosh a q+h! e 1
-iap cos  8-m! dS ~, i=1,2,6.  c. 32!

The energy check  C.24! involves integration from B = 0 to 2~.

In this case, we observe that for a spheroid because of symmetry of

the asymptotic velocity potentials u., it is necessary to integrate
1

only over one quadrant and multiply the result by a factor of 4.

In the case of heave  i=2!, it can be shown from physical
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considerations that u  r,8,0! is independent of 0. So it is

necessary to evaluate the integrand for only one value of 0, say

0=@, and multiply it by 2m to get the integral.




