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PREFACE

This report was primarily written by V. Seetharama Rao and
represents the work done by him for a Ph.D. dissertation at
Texas A&M University under the direction of Dr. C. J. Garriso:.

With the inecreasing interest in construction offshore of
large structures such as oil storage tanks, there is an urgent need
for information about wave forces, moments, etc. on such structur:s.
It is hoped that this report will serve as a beginning in our
understanding of the basic problem of interaction of surface gravity

waves with large submerged objects.
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ABSTRACT

This report presents the practical and rigorous sclution of
the potential flow problem associated with the interaction of a
train of regular surface gravity waves with a fixed rigid submerged
half sphercid resting on the bottom.

The linearized boundary-value problem is first formulated for
a fixed semiellipsoid. The radiation problem of a rigid semi-
ellipsoid oscillating in its various degrees of freedom, one degree
at a time, in otherwise still water is also formulated simulta-
neously, so as to use its results to check the results of the first
problem by Haskind's relations. In each case the solution is
obtained by the Green's function approach. In this method the
velocity potential is obtained by distributing "unit wave sources"
over the surface of the object. The Green's function which re-
presents the velocity potential for a unit wave source is chosen
such that it satisfies all the conditions of the problem except
the normal boundary condition on the surface of the object. When
this condition is applied, the result is a Fredholm integral
equation of the second kind which must be solved for the distribu-
tion function. In the numerical procedure the integral equation is
replaced by a matrix equation which is solved on a digital computer.
The numerical procedure is outlined in detail for the semiellipsoid

and finally, numerical results are obtained for a half spheroid.



The numerical results obtained include amplitudes and phase
shifts of the dynamic pressures, horizontal and vertical force and
moment coefficients and the phase shifts of the forces and moment.
The results are complete in the sense that they include all the
data necessary for practical engineering design. Several checks
are made on the numerical results. These include the Haskind's
relations check, an energy check for the radiation problem, and
comparisons with an asymptotic solution and experimental results
for a hemisphexe. All these checks and comparisons are successful
and it appears that the numerical method employed yields walid

and accurate results.
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1. INTRODUCTION

Recent years have witnessed the emergence of two significant
trends which may well mark an important turn in human history.
On one hand, the population of the earth has expanded beyond all
previous estimates placing ever increasing demands on the natural
resources available to man. Yet, on the other hand, since the
resources available on land are limited, they continue to
dwindle. Therefore, it is but natural that caught between these
opposing trends man should turn to the oceans {(especially their
coastal waters) for a solution to his dilemma. The exploitation
of the natural resocurces of the coastal waters requires, among
other things, the design and construction of large scale struc-
tures offshore. This in turn necessitates a better understanding
of the interaction of surface gravity waves with structures such
as large submerged oil storage tanks. Tt is the aim of this
dissertation to contribute towards such an understanding by tak-
ing 2 basic approach to the problem of wave interaction with
submerged objects. More gpecifically, the problem of interaction
of a train of plane regular waves with a rigid fixed submerged
semiellipsoid will be studied by potential flow theory and

nrumerical results obtained for a half sphereid. Although the



shape considered is somewhat idealized, it is representative of
practical shapes and the results provide some insight and under-
standing into the fundamental problem.

Before going into the details of the particular prpblem of
this dissertation, we shall first consider briefly the various
aspects of the general problem of wave forces on submerged objects.
Such a review will provide a perspective on how the present prob-
lem fits into the overall picture. Next we shall review briefly
the theory and the available literature on wave/structure inter-

action.
A Review of the General Problem of Wave Forces on Submerged Objects

Wave forces acting on such objects as piles, submerged pipe-
lines, and small spheres have been studied extensively over the
last two decades. Significant contributors include Morison,
et al. (1950)%*, Beckmann and Thibodeaux (1962), and Grace and
Casciano (1969}, to name only a few. In all these studies, the
size of the object is small relative to the length of the inci-
dent wave. This condition occurs in many practical situations.
It simplifies the géneral problem of wave/structure interaction

by allowing one to assume that the object does not disturb the

incident wave in anv way. As far as the forces on the object are

#References are arranged alphabetically by author at the end
of the dissertation.



concerned, one can assume that the flow field existing at the
center of the object at any instant due to the incident wave ex-
tends to infinity. Further, the wave force acting on the object
can be considered to be the gum of two components, drag and
inertia. The drag force is proportional to the product of a drag
coefficient, Cd’ and the square of the fluid velocity. The in-
ertia force is proportional to the product of an inertia coef-
ficient, (1 + Cm)’ where Cm iz the added mass coefficient, and

the local acceleration of the fluid. Normally the empirical coef-

ficients, C, and Cm’ have to be found by practical testing.

d
Morison, et al. (1950) first applied an expression of the above
type to the wave forces on piles. Hence, it is commonly known

as the 'Morison equation."

As the size of the object increases relative to the length of
the incident wave, two effeﬁts take place. Firstly the incident
wave is scattered due to the presence of the object. Secondly,
since the object is not deeply submerged, there is an effect due
to the proximity of the free surface., This is the situation that
occurs in the case of structures such as submerged oil storage
tanks, whose dimensjons may be of the order of the wave length and
water depth. Both the effects menticned are commonly known as
"diffraction effegts." However, it is often convenient for pur-
poses of discussion to classify them as the relative size effect

and the relative depth effect (er the free surface effect),



respectively. In view of these effects, the simplifying assump-
tions on which the Morison equation is based are no longer valid.
Hence the Merison equation must be replaced in this range by an
altogether different approach. Such a theory which accounts for
the relative size of the object and the free sufface.effect is

commonly known as "diffraction theory." 1In this approach separa-
tion and viscous effects are neglected and the problem is set up
in terms of a velocity potential and the wvelocity potential which
satisfies the necessary conditions is sought. Once it is found,
the dynamic preséure distribution on the surface of the objéct

is determined by Bernoulli's equation and the forces and moments
are obtained from the pressure distribution'by surface integra-
tion.

At this stage it is imperative to know under what conditions
separation and viséous effects Become negligible and diffraction
theory can be expected to yield results that are practically
valid. Viscous effects are accounted for in the Morison equation
by the drag force term. They are mainly dependent on the ratio
of the displacement of fluid particles near the cobject to the size
of the object. For small values of the relative displacement,
the flow near the object remains attached and viscous effects can
be neglected. For example, for the case of a fluid starting from
rest and flowing with constant accelerafion past a circular

cylinder, the results of Sarpkaya and Garrison (1963) have shown



that at the beginning of motion, the added mass and drag coef-
ficients are equal to the inviscid flow values of unity and zero
respectively. In the case of wave/structure interaction, if
linear wave theory is assumed, then for a given wavelength and
water depth, the relative displacement of fluid particles is
linearly proportional to H/2a, where H is the height of the in-
cident wave and a is a characteristic length of the object. In
the case of large structures, such as o0il storage tanks, the
parameter H/2a 1is usually small so that viscous effects can be
neglected and potential flow theory vields valid results. This
is an advantage from the theoretical point of view. On the other
hand, for small objects such as piles, E/2a is generallv large
and viscous effects become quite significant.

In the preceding discussion on the general problem of wave/
structure interaction, we have identified three dimensionless
parameters as being relevant. There is first of all the relative
size parameter, a/L, where L is the length of the incident wave.
For convenience from the theoretical point of view, it is pref-
erable to choose 2na/L instead of a/L to represent the relative
size. This parameter is significant with respect to the region
of validity of the Morison type equation. Secondly, there is the
relative depth parameter, h/a, where h is the water depth. This
parameter reflects the free surface effect and decides the value

of Cm to be used in the Morison equation. Thus for small



relative depths, the value of Cm is greater than that for infinite
depth of fluid. Finally viscous effects are represented by the
relative displacement parameter, H/2a. Following Garrison,
Seetharama Rao and Snider (1970), the general features of the
wave/structure interaction problem can be qualitatively shown,
for a given 5/5, on a diagram such as figure 1. For small values
of 2ra/L and all values of H/ZE, the Morison equation is wvalid
and diffraction effects due to relative size are negligible. On
the other hand for small values of H/2a and the entire range of
27a/L, viscous effects are negligible and diffraction theory is
generally applicable. There is a region of overlap between the
two approaches when both 2na/l and H/2a are small. 1In this
region, Cd in the Morison equation tends to zero and Cm ap-
proaches its potential flow value which depends on the shape of
the object and the relative depth, h/a.

Having considerad the broad features of the wave/structure
interaction preblem in general, we shall hereafter confine cur
remarks to the region where diffraction theory is applicable.
Thus it shall be assumed in the following discussion that the
height of the incident wave is small relative to the size of the
obiject so that viscous effects can be neglected. This is true
for most large structures. At this point it must be mentioned
that while much work, especially of an experimental nature, has

been done so far on submerged objects in the range of small values
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of 2ra/L, little has been accomplished in the range of higher
values of the same parameter where the Morison equation becomes
invalid and a diffraction theory must be employed. Part of the
reason for the paucity of experimental data is that in this range
testing has to be done in threa-dimensional wave tanks and is both
difficult and expensive. The experimental data collected, if anvy,
appear to be proprietory and so have not appeared in the literature.

This points to the need for theoretical work in this area.

A Review of the Theoretlcal Approach and Literature on the Problem

of Wave/Structure Interaction

A review of the available literature on the application of
potential flow methods to the problem of wave/structure inter-
action reveals that.there are almost no publications devoted to
the problem of wave forces on objects submerged in water of finite
depth and resting on the bottom. One weil—kﬁown exception is the
case of vertical cylindrical piles for which MacCamy and Fuchs
{1954) have developed a diffraction theory the results of which
reduce to those given by the inertia term in the Morison equation,
for the limiting case of 2ma/L + 0. On the other hand, much
theoretical work has been done on the problem of objects located
at the free surface in water of infinite depth, primarily because
of interest in the motion of ships and breakwaters. Because the

theoretical approach and many of the technigues of the latter



problem are directly applicable to the former problem, we shall
review the literature avallable on ohjects located at the free
surface,

There are two types of problems generally dealt with by
potential flow methods. On one hand, there is the problem of a
train of incident waves acting on a fixed rigid objeect, This
1s commonly known as the "diffraction problem," The main results
of interest here are the forces and moments, and in the case of
two-dimensional problems the reflection and transmission coef-
ficients., The problem of this dissertation falls under this
category, On the other hand, there is the problem of a rigid
object executing forced harmonic oscillations of small amplitude,
in otherwise still water, in its various degrees of freedom.

This 1s commonly called the 'radiat{on problem." The parameters

of interast here are the added mass and added moment of inertia
coefficients, and the damping coefficients. For the two-dimensional
problem, the ratio of the wave amplitude at infinity to the am-
pPlitude of displacement of the object, known as the "wave-height
ratio”, 1s also of iInterest. The diffraction and radiation
problems, while often studled independently, are still related as

we shall see presently. Moreover, for many practical cases such

as ship motiops, floating breakwaters etc., the two problems

have to be worked together in conjunction with thé equations of

motion.
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Theoretical approaches. As far as the theory for the wave/

structure interaction problem is concerned, there are two basic
appreaches. John (1949, 1950) éhowed that the velocity potential
for the problem can be obtained by a suitable distribution of

unit wave sources over the surface of the object. The potential
for the unit sourceé, which is also called the "Green's funection"
for the problem, must satisfy all the conditions of the problem
except the nofmal boundary condition on the surface of the object.
When the latter pondition is applied, an integral equation is
cbtained the solution of which specifies the manner in which the
unit sources are to be distributed, In general the equations

are quite complex and therefore it is difficult to obtain solu-
tions in a closed form, so that numerical methods mus t Sg used.

In an altgrnate approgch, Ursell (1949a,b) obtained tﬁe velocity
potential for the radiation problgm for a circular cylinder by
combining ; series of wave potentials with uﬁdetermined coefficients
and a potential with a multivalued singularity at the origin.

The wave potentials have to satisfy certain conditions of the
problem. They are superposed to satisfy the normallvelocity condi-
tion on the surface of the object. This giveé an infinite number
of equations in an infinite number of unknown qoefficignts. For
numer;cal calc?lations, only a finitg number of w;ve potentials
are chosen. The equations are solved by relaxation techngques to

obtain the coefficients for the wave potentials. The source at



the origin is required in this scheme to satisfy the conditlons
at infinity. With this method Ursell treated the problem of a
heaving and rolling semisubmerged circular cylinder at the free
surface in water of infinite depth.

Two-dimensional problems. We shall now review briefly the

literature on two-dimensional problems. Dean and Ursell (1959)
considered the interaction of a traln of regular waves witﬁ a
fixed semi-immersed clrcular ecylinder at the free surface in in-
finite depth of fluid from theoretical as well as experimental
point of view. They obtained reflection and transmission coef-
ficients, and horlzontal and vertical force coefficients. Their
work complements Ursell's earlier work on the radiation problem.
Yu and Ursell (1961) extended Ursell's work on the heaving
circnlar cylinder to the case of finite depth of fluid. They
also presented experimental results for this case. Their
theoretical results compare favorably with the experimental data.
Porter (1960) extended Ursell's method to elliptic and other
rather general two-dimensional shapes. Kim (1965) applied.the
Green's function approach to the problem of an elliptic cylinder

oscillating at the free surface in infinite depth of water and

11

obtained numerical results for the physical quantities of interest.

Three-dimeﬁsional problems. As for three-dimensional pro-

blems, Havelock (1955) treated the problem of a sphere floating

half-immersed in water and describing heaving oscillations. 1Using



a method similar to Ursell's, he obtained approximate results for
the added mass and damping coefficients. Macagno and Landweber
(1958), and Landweber and Macagno (1960) considered the problem
of a rigid spheroid oscillating in a free surface and obtained
results for the added mass coefficients for horizontal and verti-
cal oscillations, respectively. Barakat (1962) studied the pro~
blem of heave of a freely floating sphere under the action of
regular incident waves., He solved the radiation and diffraction
problems separately using Ursell’s approach. The added mass and
damping coefficients and the wave~height ratio in the former
problem and the force on the fixed sphere in the latter problem
were obtained. The results were combined via the equations of
motion to solve the complete problem of a freely floating sphere
in waves.

In a work that is of greater interest to the present study,
Kim (1964a) formulated the complete problem of an oscillating
ship, in the form of a2 half-ellipsoid, in waves and presented a
method of solving it by the Green's function approach. Later,
Kim (1964b, 1965) solved the radiation problem of an oscillating
ship at the free surface in otherwise still water. The three-
dimensional problem of an ellipsoid was considered. The ship was
assumed to oscillate in all possible degrees of freedom. The
depth of fluid was assumed infinite. Numerical results were ob-

tained for the added mass and added moment of inertia and damping

12
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coefficients. They were COmpéred with results from previous in-
vestigators. Monacella (1966} considered the problem of a slender
ship free to oscillate on the surface of a fluid of finite depth
and subjected to oblique waves. Only the asymptotic approximation
to the velocity petential valid in the "far field" was considered
and used to compute the hydrodynamic pressure on the bottom of
the fluid for the case of a ship in the form of a spheroid.

At this juncture one important point needs to be stressed.
As mentioned previously, there are definite relations between the
diffraction and the radiation problems. Thegse are commonly known
as "Haskind's relations." According to Newman (1962), in 1957
Haskind related the forces and moments on a fixed body due to a
given incident wave to the asymptotic velocity potential walid at
large distances from the beody for the corresponding radiation
problem. Thus the vertical force on a fixed object is related to
the potential at an infinite distance for the same object heaving
in cotherwise still water, and so on. In 1962 Newman applied
these relations to calculate wave forces on a submerged ellipsoid
and a floating elliptic cylinder. Moreover, he showed that in
the case of the radiation problem, because of conservation of
energy, the damping coefficients can be related to the velocity
potentials at infinity. Hence Newman related the wave forces in
the diffraction problem for the ellipsoid to the damping coei-

ficients in the corresponding radiation problem. In the case of



the elliptic ¢ylinder, he related the wave foreces to the wave-

height ratios instead.

Statement of the Dissertation Froblem

The problem under investigation in the present dissertation
may be considered now. It is obvious, from the brief literature
survey, that not much work has been done so far on the problem
of wave forces on large objects completely submerged in water of
finite depth and resting on the bottom, which Is the case of
primary interest to coastal and ocean enginesrs. In view of the
apparent and pressing need for information about wave forces on
such structures as submerged oil tanks, the research reported in

this dissertation has been undertaken. More specifically the

diffraction problem of a fixed rigid submerged semiellipsoid rest-

ing on the bottom and acted on by a train of regular waves is
considered. Besides the assumption that the semiellipsoid is
always completely submerged, there are twe basic limiting assump-
tions to the theory. Firstly, the parameter H/2a, where a is the
semiaxis of the ellipsoid in the direction of advance of the in-
cident waves, is considered swmall so that wiscous effects may be
neglected., Secondly, the wave height H is assumed small in com—
parison to the wave length L and the fluid depth h, so that
linearized wave theory can be employed. The scatter velocity

potential is obtained by a distribution of unit wave sources on

14
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the surface of the ellipsoid. On applying the normal boundary
condition on the surface of the object, a Fredholm integral equa-
tion of the second kind is obtained. Its solution, by numerical
methods, indicates the manner in which the sources are to be
distributed. To reduce the computer time required, tﬁe problem
{s rvestricted to the case of a spheroid. Both oblate énd prolate
spheroids are considered. The problem considered here is quite
similar to the one dealt with by Kim (1965) and in a sense com~
plements it, since Kim considered only the radiation problem and
the case of infinite depth whereas the diffraction problem and
the case of finite depth are considered here. The Green's func-
tion used in this dissertation is the same one used by Monacella
as a starting point, though he was able to gsimplify it con-
siderably hecause of his assumptions. Some of the analytical
and numerical techniques of both these investigators are borrowed
freely in the present work, where required.

The radiation problem for thec case of a submerged spheroid
does not involve much work beyond the diffraction problem con-—
sidered here, since the only difference between the two is in the
normal boundary condition on the spheroid. The CGreen's functionm
is the same. Yet the radiation problem is not studied in detail
in the present work, since not much use ig foreseen for it by way
of practical applications. However, the problem is set up and

solved and its results are used in the Haskind's relations in a
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few cases as a check on the results obtained for the diffraction
problem. Some other checks, including comparison with experimental
results, are made to assure the validity of the results given

here. All of these checks are successful and on the basis of this,
1t appears that the results are valid at least over the range of
parameters tested.

The work described in this dissertation is of a basic theoret-
ical nature. So no attempt will be made to list all possible areas
of application. As already mentioned, one application which
motivated this research is in connection with large oil storage
tanks currently being built near offshore drilling sites. The

present work may be useful for design of underwater habitats also.
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2., TFORMULATION OF THE PROBLEM

In this gection the radiation and.diffraction problems are
formulated simultaneously, using a common notation. Thus es-
sentially seven different problems are dealt with, simultaneously.
These correspond respectively to the fluid motion produced by an
object oscillating in its six degrees of freedom, one degree at

a time, and the scattering of incident waves due to a fixed cbject.

Bl

s /2 S 5 57

Figure 2, Schematic for the problem.

Consider a rigid semiellipscid submerged in an invigcid, In-
compressible 1liquid of finite depth h and resting on the bottom,

as shown in figure 2. Let a rectangular Cartesian coordinate
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scheme 0§§E he chosen such that the (;,E)—plane coincides with the
undisturbed free surface. The surface S of the semiellipsoid

with center (0,-h,0) and semiaxes of length a, ¢ and b is given

by

-2 =2 =2

%+—(1—_“;}»;2—-+?:2—=1. (2.1)
a ¢ b

For convenience another coordinate scheme 0'x'y'z' 1is also chosen
such that its origin is at the center 0' of the semiellipsoid
and its axes ave respectively parallel to those of the first
scheme, as shown in figure 2.

1f the body now executes linear or angular oscillations of
small amplitude with an angular frequency, o=2«/T about its un-
disturbed position, where T is the period of the oscillations,
then the surface disturbances created by the motion travel out-
ward as waves in all directions. The motion of the rigid object
oscillating in its six degrees of freedom may be describ=d by

-iot

ﬁj(t) = ﬁe[ig e 1.  §=1,2,3 (a)

and (2.2)

-10¢t

Bj(t) = Re[e; e 1,  4=4,5,6 (b)

where ﬁ; and B? denote the amplitudes of the linear and angular

displacements, respectively, and Re denotes the real part of a



complex expression. Here il’ iz and i3 denote linear oscillations
in the X, y and z directions and are called "surge", "heave" and
"sway', respectively. Similarly 84, Bs and 66 represent angular
oscillations about the x', ¥' and z' axes and are called "roll",
"yvaw'" and "pitch", respectively. 1In all cases, the linear dis-
placements of the object due to its oscillations are assumed
small compared to its linear dimensions, so that the resulting
waves may be assumed to be of small amplitude, and separation and
viscous effects may be neglected.

Assuming the fluid motion to be irrotational and harmonic
with the frequency ¢ when the transient meticn disappears, a
veloclty potential ¢j may be introduced to descrihe the motion.
d. is defined such that its gradient gives the fluid velocity.

3
Let

8, (%,7,75t) = Re[V,(X,3,2) e 19Y (2.3)

where Vj is a complex functlion of space only. Then because the
fluld is incompreasible, ¢j must satisfy the Laplace equation.

That is,

(2.4)

L]
=]

v, Gy, 2st)

in the region R outside the body and between the free surface and

1
1
o

the bottom, §

19



Let us ncw_consider the diffraction problem. Assuming the
bedy te be fixed in its undisturbed position, consider a train of
regular progressive waves of relatively small amplitude ﬁo and of
frequency o (wave length L) coming from x = - and advancing in
the +x direction. Let the free surface elevation of these in-

cident waves, above the mean water level, be given by

A (k,25t) = Refn® ot (kx-0t) (2.5)

where n° is assumed to be real and k=2n/L. Note that the height,
H, of the incident waves is equal to twice the amplitude ﬁo.

Once the transients due to interaction between the wave and
the object have disappeared, we shall assume that the resultant
fluid motion 1s irrotational and harmonic everywhere with the
frequency, 0. Moreover, since the amplitude of the incident wave
system is small, the amplitude of the resulting wave system may
also be assumed to be small compared to L and h so that linearized
theory can be employed in what follows. Hence the wvelocity
potential ¢' associatéd with wave interaction with the fixed

chject may be written as
o' = 9.+ & (2.6)

where @0 represents the velocity potential of the incldent wave in

the absence of the body, and %,, which is called the "scatter

7

20
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potential", arises due to the presence of the body. The potential

¢0 is already known from linear wave theory. Therefore hereafter

the problem is formulated in terms of the unknown scatter potential

@7 rather than the total potential %',

Since the total potential ¢' must satisfy the Laplace equa-

tion and ¢, is already a solution of the same, ¢

0 must now satisfy

7
the Laplace equation. Therefore the subscript j in (2.3) and

{2.4) may be considered to range from 1 through 7, the first six
values representing the various degrees of freedom, and 7 denoting

scatter. Since the problem for ¢ is mathematically similar to

7
that for ¢j, i=1,2,3,...,6, they will be formulated simultaneouslv

hereafter by using the notation j=7 to correspond tec the gecatter

problem. Tn view of (2.3}, (2.4) may now be rewritten as

?2Vj(§,§,5) = 0 in the region R . j=1,2,3,...,7 (2.7)

The wvarious boundarv conditions that have to be satisfied

by ¢,, j=1,2,3,...,7, will be considered next. At the free sur-

3

face, %, has to satisfy two boundary conditions. The first of

3

these, which is a dynamic condition, is obtained by linearizing

the unsteady form of Bernoulli's equation. It may be written as

3%,
gﬁj(Q,E;t) + EEJ(E’O’E;t) =0 _ (2.8)



where ﬁj represents the elevation, above the mean water level, of
the surface disturbance resulting from the oscillation of the body
or scatter, and g denotes the accelerafion due to gravitv.- The
second boundary condition, which is a kinematic condition, re-
quires that particles on the free surface must always remain

there, After linearization, it may be written in the form

e, an,
—d(z,0,7;0) = 5 b2 (2.9)
8y

Conditions (2.8) and (2.9) may be combined into one to yield the

complete free surface boundary condition

2V 2
—1x,0,7) - & v.(R,0,2) = 0 . (2.10)
3; 4 J ’ '

Howewver, using the well-knowm relation

2
‘f? = k tanh kh ' (2.11)

from linear wave theory, equation (2.10) may be rewritten as

av,
—L(%,0,2) - k tanh (kh) V,(x,0,z) =0 . (2.12)

oy ]

On the rigid impermeable bottom, §=—E, @i must satisfy the
kinematic boundary condition that the velocity normal to the

bottom be zero. Therefore
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oV,
—l(x,-h,2) =0 . (2.13)

oy

In addition, Qj must satisfy the kinematic boundary condition
on the surface of the body. For the oscillating body, this re-
quires that the fluid velocity normal to the surface must equal
the velocity of the surface normal to itself. Because of linear-
ization, this condition is satisfied on the undisturbed position,

S(x,v,z), of the surface. Therefore

oV .
—L(2,5.2) = B, 3.0 on SGF,E), $=1,2,3,..06 (2.14)
an

where n is a coordinate normal to S, as shown in figure 2, and

— - — _ -. - -— = —- _-.o
h1 = —{g Xl n_s h2 = -jiqg X2 ny, h3 ig X3 n,
= i O, ,- = - P , o,— =
h4 = -ig 84[(Y+h)nz - zny], h5 -ig Bs[znx xnz], {2.15)
h, = —ic 8o(xn_ -~ (F+)n_ ]
6 6y Y x'

Here n_s ny and n, denote the components of the outward unit normal
A to the surface S at any point (X,v,z) on the surface. The deri-

vation of the functions Ej is shown in Appendix A.



For the diffraction problem, the kinematic boundary condition
on the surface S requires that the fluld velocity normal to the
surface must be zero, or 34'/sn=0. In view of (2.6), this condi~

tion may be written in terms of the scatter potential ¢7 as

0, Py _ o
—(%,¥,2) = - —(x,¥,2) on 5(x,v,2) . (2.16)
an an

From lirear wave theory, the velocity potential for the incident

wave, ¢0, 1s given by

0

. =0 = - o
- Re[- ign cosh k(hty) el(kx-ct)] ]
cosh kh

(2.171

In a manner analogous to the representation (2.3), we may define

a function VO corresponding to the incident wave such that

1¢0° cosh k(h+y) kX
c cosh kh

Volx,y.2) = - : (2.18)

Therefore (2.16) may be rewritten as

v, W,
—{X,¥,2) = - —(X,y,2)
oan an

—-0 — - — — N —
- _ En k [nx cosh k(htg) -in ginh k(h;z)] elkx on S.
g cosh Ikh y cosh kh
- (2.19)

24
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Finally, the disturbances caused by the oscillations of the
object or the scattering of the incident wave must produce only
outgoing vrogressive waves at a large distance from the object.
In other words, Qi must, at an infinite horizontal distance from
the origin, approach the velocitv potential for such waves. This
restriction on the asvmptotic behaviour aof ¢i is known as the

"radiation condition." In terms of Vj it mav be written as

- -— [ 2 J— -
V509 - e (0 F TP cosn k(D) aki
cosh .kk_l

+Nas r -+ (2.20)

are polar coordinates given bw r o= (§2+52)l/2 a

-

where r and 9 nd

8= tan-l(E/;) and C, is some unknown comnlex function of 8. For
]

given + and #, the factor CT(G) r -1/2 is proportional to the
amplitude of the waves.

Equations (2.7), (2.12), (2.13), (2.14) or (2.19) and (2.20)
together constitute the boundary-value problem for Vi. However,
it is more convenient to rewrite the preblem in terms of dimension-
less variables and to solve it in terms of dimensionless parameters,
since the results will then be universallv valid. As indicated

in the "INTRODUCTION", the solution teo the problem depends on the

following dimensionless parameters:

(i) ZﬂE/f, which indicates the effect of the relative

size of the ellipsoid,
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(ii) h/a, which is related to the proximity of the free sur-
face, and
(i1i), (iv) b/a and c/a, which establish the geometry of the
ellipsoid.
In order to show clearly the dependence of the solution on the
various parameters, we shall define a = ka=2na/L and make the rest
of the space varlables and amplitudes dimensionless, using a.

That is , let

]
N
T
Wl
L 3

h =h/a, b =b/a, ¢ =c/a, x=%/a, v =y/a, z

x'=x"Ya,y' ' =y'/a, z' = z'/a, v = r/a, n = n/a, (2.21)

H
>

n® = 7°/a, X; = ;/5, j =1,2,3 , etc.

For convenience, the following notation will also be used

hereafter:
o 0

X, =8, , j=4,5,6. 2.22
j =8y =4 (2.22)

The surface $(x,v,z) of the ellipsoid is now given by

2 2
X% + —(ﬂz‘)—+ ?'—2 = 1. (2.23)

c b

We shall next define dimensionless potentials ui as follows:



aui(x,y,z) = {g V1(§,§,§)/g§ X? tanh{kh), j=1,2,3,.,.,6,

au, (x,v,2) = =ic v7(§,§,2)fg5 n? . (2.24)

The reasons for the particular form of definitions chosen are:
(1) the normalized rioblems for ui all appecar similar and the
normal velocity condition on 5 is simplificd, and (2) the dimen-~
sionless dvnamic pressure is linearly proportional to “1 in each
case.

By using the definitions given above and the conditions
previously maentioned for Vj, the boundary-value problem corres-
ponding to the fluid motion arising from small harmonic escilla-
tions of the ripgid submerged body in its six degrees of freedom,
as well as the scattering of a train of regulay small amplitude
wvaves due to the fixed object can now be written conciselv in
terms of uy- Thus the dimenslionless potential uj(x,v,z),
j=1,2,3,...,7, continuoys in the fluid region R is souzht such

that
2 . .
(A) ¥ u1(x,v,z) =0 in region ¥

I,
(B) 574(x,0,2) = a tamh(ah) u, (x,0,2) = 0

A
(C) 3;1(x,-h.z) = 0 outside S{x,v,2) (2.25)



g,
(D) Sﬁ(xsy’z) = hj(x’y’Z) on S(X,Y.Z)

~-1/2 cosh a(htv) eiar

>0 as r» =
cosh ah *

(F) uj(r,B,Y) - Aj(ﬁ)r

where S(X,y,2) represents the immersed surface of the ellipsoid
in its undisturbed position and Ai is an unknown dimensionless
complex funmction of 6. Here h1(x;y,z) denotes a prescribed func-
tion which depends on the mode of oscillation for j=1,2,3,...,6,
and on the incldent wave for j=7. The functions hj are obtained

from (2.15) and (2.19) as

h = = = = -
1 s h2 ny, h3 n,, h4 (_v+h)nz zny,.

h5 =zn_ -~ xn, h6 = xny - (y+h)nx s (2.26)
eiax
g = EB;E—;H-[nV sinh ath+y) + ing cosh alhtv)]

It is apparent that the seven nroblems described by (2.25)
are identical except for the functions hi. This makes it very
convenient to solve them simultaneously. The remainder of this

dissertation is primarily devoted to the solution of (2.25).
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3. FORMULATION OF THE SOLUTION IN TERMS
OF THE GREEN'S FUNCTION

The solution tﬁ the boundary-value problem (2.25) can be
cbtained in terms of a2 Green's function. In physical terms, this
approach consists of distributing a number of three-dimensional
"wave sources' on the surface of the ellipsoid. The wave sources
are chosen so as to satisfy all the conditions of the problem
except the condition (D) on the surface of the ellipsoid, The
strengths of these sources are finally adjusted so as to satisfv
the condition (D). The potential for one such wave source of
unit strength is called the "Green's function"™ for the problem.

We proceed by use of Green's reciprocal theorem, applied to
the region R, as shown in figure 3. The region R is bounded by

the free surface, S the bottom, S5 , the evylindrical surface,

£ b
§_ (the axis of the cylinder coinciding with the y-axis and the

radius ¥ > ®), and the surface of the ellipsoid, S.

- Sf(y=0)

-8

%

Figure 3. Region of application of Green's theorem.
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Let uj(x,y,z) and the Green's function G{x,y,z;Z,n,;) be
chosen as subjects of Green's reciprocal theorem. Here (x,y,z)
is any general point in the fluid region, Including the boundar-
ies, and (£,n,z) is a particular point in the interior of the
region, where a unit wave source is located. G(x,v,z;f,n,;) is
the velocity potential at the point (x,¥,z) due to the unit source

at {£,n,z). From Green's theorem

ffj}; [uj(X:Y;Z) VZG(x,Y,Z;E.mC) - G(X.Y,Z;E,H.C) vzuj(xsy:z)]

aG .
dz = . s ¥ rew ALY PRI
dx dy dz ffq o5 45 +S[u](xyz) a“,(x Yo23E,N, L)
f b "
: su
- G(X,¥,25E,Nn,5) ggé(x,y.Z) ] ds . (3.1)

Here the Green's function, G, is yet unknown. n' 1s the unit
normal to any of the surfaces, outward from the fluid region.
n' is used to denote a coordinate in the same direction. Since
u]_ satisfies the Laplace equation throughout the region R, the

second part of the integral on the left hand side of (3.1) van-

ishes and, moreover, if G(x,v,z:E,n,z) 18 chosen such as to satisfy

2
vIG(x,y,258,n,8) = 8(x-E) 8(y-n) 8(z-1) (3.2)
where 6§ is the Dirac delta function, the left hand side of (3.1)

reduces to uj(E,n,C).



Next we shall consider the integral on the richt hand side

of (3.1) for each segment of the boundary surface. First we may

write
fl;_ P R & ﬁG
I‘ [q [u_j in’ G —m'] j.f [ n' G]
f
au,
-n [ 5;%—— a tanh (ah) uj] ] ds . (3.3)

In view of (2.25-B), the integral on the right vanishes provided

> is chogsen to satisfy the free surface condition, i.e.
oG
gy(x,O.z;E,n,r:) - a tanh(ah) G(x,0,2z;E,n,2) =0 . (3.4)

Secondly, in view of (2.25-C),

ff [jgc,.-,z;{l] ds = 0 (3.5)

provided G gatisfies the hottom boundary condition, 1.e.

G aG
'f_}—t;(xs_h’z;'s:nsf_;)_= 'é';(X,'l}_.Z:EQm,E) =0 ., (3.6)

Thirdly,

IIS [uj %‘G;:_i_]'ds.z ffs [uj[%g-;-_ia(;]

au, ’ '
—G[,——J.-—iau,]]ds. (3.7)
an 1

3l
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By means of the radiation condition, (2.25-E), it can be shown

that

au,

—w%-— iau, =0 ons5 .,

an j @

Therefore if % is required to satisfy the condition

¢
on’

- iaG = 0 on S .
K

the integral on the right hand side of (3.7) vanishes.

obtain finally the result

uj(gsn’C) = ff‘; uj(X.Y.Z) :;_n'-" G(xa}’aziﬁm.lﬁ) d5

) 3 _
“ffs G(x,¥,Z5E,1,8) T uj(x.v.?-) as .

(3.8)

(3.9)

Thus we

(3.10)

Interchanging the roles of (x,y,z) and (&,n,z) (that is, now

let (x,¥,z) be a point in the region and (E.n,Z) be a point on the

surface S, where a source 1s located), and requiring that the

function G be symmetric in {x,y,z) and (£,n,L), we can rewrite

(3.10) as

]
uj(x,y,lz) = ffs uj(E,n,C) WG(X.Y;Z:E.H.E) ds

. 3 _
- IIS G(K,Y,Z,E,ﬂ.t’,) 30 uj(E’n-C) ds

(3.11)



Now 6 and some other function u'(x,v,z) are chosen such that
a1
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both of them satisfy the Laplace edquation in the region B' interior

to the surface % and the bottom, and Liu_'j/'clv and 4%/9v vanish on
the hottom, v = --h, Applving freen's theorem once again, we have

Ju

- .__.1 |
f[ jﬁn ds [fq 5L as (3.12)

where n 1is the coordinate normal to the surface 5, as defined
previouslv. Nate that 3/4n =«3/2n', Hence (3.12) may be re-

written as

. au!
- f w22 gs + ¢ — ds , (3.13)
4 an S an

Subtracting {3.13} from (3.11) gives

3!
uj(x,y z) —ff (u —u)WdS ff —j— S-l;i]ds-(B.llt)

If now it is required in addition that the arhitrary function u;

be such that u%=u_] on the surface 5, we have

Ju g
, - *.i _.J,
uj(x,},z) [fq P, P~ ] ds . (3.15)

Defining a function f1 such that



du, su!
fj(E,n.C) = 47 [ #(g,n,z) + 5;1(5.n.;)] - (3.16)

we can rewrite (3.15) as

1 . '
uj(x,y,Z) = Z;‘li}; fj(é,n,z) G(x,y,z;g,n,c{ ds . (?.17)

This 1s the representation desired. It_is unigue. It indicates
that the welocity notentialiuj may be obtained In terms of wave
sources located at points (&,n,rz) of the surface S. Here fj is
called the "distribution function", since 1t indicates the manner
in which unit wave sources are to be distributed over thé surface.
It is a continuous complex function which has to be determined.
The next logical step in the SOiution is to deiermine t#e
Green's function, G. In order to obtain the representation for
uj shown in (3.17), a num&er of éonditions were imphsed on G.
These may be summarized to give a boundary-value problem for G

as shown below:

(B 26(x,y.2:E,n,8) = 8(x-g) 6(y-n) 8(z-r)

(B) %E(X,O,Z;E.n,c) ~ a tanh(ah) G(x,0,z5£,n,z) = 0
(C) %(xa-haz;gsnsg) =0 ) (3-18)

(D) 1lim. [ 3G iaG] =0 .,
ar

34
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Condition (D) may alsc be written Iin the following form:

(D') G(x,6,v;&,mn,0) > g1/2 cosh a(y+h)

cosh ah
iar '
cosh a{nth) e , a8 1 +» w

where B is some unknown complex constant.

The radiation condition (D) or (D') in the boundary-value
problem for G makes the Green's function, which satisfies (3.18),
unique.

On comparing (2.25) with (3.17) and (3.18), it is apparent
that the boundary~-value problem for u, is in effect exchanged for
two separate problems, naﬁely, a boundarv-value problem for the
Green's function and a problem of finding the unknown distribution
function fj which satisfies (3.17). The reason for this approach
is as follows. Since the Green's function does not have to sat-
isfv the normal boundarv condition on the surface 5, it is easier
to find than u. Once G is obtalned, the distribution function,
fj, may be determined by using the normal boundary condition,
{2.25-D) for ui.

Normally the Green's function is obtained from the boundary-
value problem for G by means of Fourier and Laplace transform
techniques. In the preseht case, however, the Green's function

which satisfies (3.18) is given'in a diﬁensional form by Wehausen



and Laitone (1960) and, when. made dimensionless'in.out variables,

appears as given below (refer figure 4):

G(x,y,2;&,n,%) =ﬁl- 'lli"h*' 2PV f (x+v) e h
k=0

cosh k{nth) cosh k(y+h}
{ s8inh kh - v cosh «h) JO(Krl) de

2 2
+ 1 2nfat-vD) c;sh a(g+h) cosh_a(y+h) ANCEN (3.19)

a h-vh+wv

where
R = [ @0l + g e e0? ] V2, (3.20)
R= [ en? e+ @0? ] M2 (3.20)
ry =. I (ng)z + (z-c)2 ] 12 R (3.22)
and

2 o
v = ;;—a = a tanh ah. ' (3.23)

In (3.19) PV is used to denote the Cauchy principal value of the
infinite integral and J0 is the Bessel function of the first kind
of order zero. Note that x is @ dummy variable of integration.

It is necessary to take the principal value of the integral
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(x,v,2)

Sl(ﬂ,n,t)

-
Sl(i’ 2h"rl pra)

Figure 4. Definition sketch for Green's function.

because when «=a, the denominator of the integrand goes to zero so
that the integrand tends to infinity.

It is worthwhile to consider the significance of each of the
terms in G separately. Normally in steadv three-dimensional
potential flow past an object in an infinite fluid, it is necessary
to distribute only simple three-dimensional sources, such as Sl’
on the surface of the object. Their potentials are of the form

1/R. However if we are interested in the flow past a half obiect



in a semi-infinite fluid with a rigid boundary in the plane of
symmetry, then we must consider the effect at any point (x,y,z)

due to the image source Si also. Si is the image of Sl in the
rigid boundary. This is to satisfy the kinematic condition on

the rigid boundary. 1In this case, in our coordinate scheme, the
potential of the image source is of the form 1/R'. Besides the
1/R and 1/R' terms, which occur in regular potential flow problems,
the infinite integral term and the imaginary term are needed in

G in order to satisfy the free surface boundary condition and the

radiation condition.

Before proceeding further, we note that G may be written as

+ G*(x,y,2;£,n,%) (3.24)

G(x,¥s23£,0,L) =%

where

G*(X,Y,Z;.E ’n9C) = %*’ 2 Pv j (K"’\)) e—Kh
k=(

cosh k{nth) cosh «{y+h)
(< sinh xh = v cosh xhy Jo KTy &

Zw(az—vz) cosh a(n+h) cosh a(y+h)

2

+ i 2
ah-vh+wv

Jo(arl) . {3.25)

As the general point (x,y,z) tends to the source location (£,n,%),
1/R tends to infinity. On the other hand G* remains finite. Thus
{3.24) snlits G into two parts, one singular at (f,n,z) and the

other everywhere repular.
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It is to be noted that in the representation (3.17) because
of the wav G is chosen, ui automatically satisfies conditions (A},
{8), (C) and (E) of the boundary-value oroblem (2.25). So the
onlv condition left for it to fulfill is the boundarv condition (D)
on the surface S(x,v,2) of the body. When the normal derivative
of u, is taken at a point (x,v,z) of the surface 5, using the

]

representation (3.17), the result is as follows.

ou
S S | w1
™ (X,j 12)- 2 fj(‘K,Y,Z) " ffq fj(im,C)

aq(x,v,z;a.n,a) ds (3.26)

a0
It mav be noted that om the right hand side of (3.26) there is an
extra term, —fi(x,y,z)/Z, which is unexpected. It arises hecause
of the affect on the npint (x,v,z) due ﬁo the source located
there. This is discussed in detail in Aevnendix B. Substitutiom
of (3.26) in the houndary condition (2.25-D) for ui results in
the following equation which must be satisfied at all noints

(x,v,2) of the surface 5:
—f (x,y,2) i £ (En,0) Si(x,v,2:8.0.2) dS
i Xy¥,2) = - ¢ Esnsl i Ky VaZit,MNsb -

= th(x,y,z) . (3.27)
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In (3.27), for given (x,v,z) and (£,n,Z), aG/%n 1s known since G
is given by (3.19). Similarly hj(x,y,z) is known from Section 2.
Hence the only unknown is the distribution function, fj. Since
fj occurs both under the integral sign as well as outside cof it,
(3.27) is called an "integral equation.” This particular form of
equation is known as "Fredholm's integral equation of the second
kind." Thus the boundary-value problem (2.25) for the velocity
potential uj is finally reduced tc a problem of solving the
integral equatiomn, (3.27). Because the Green's function is quite
comnlicated, it is not possible to solve (3.27) in a closed form.
Hence numerical methods will have to be used. Once fj is known,
the potential uj can he obtained from (3.17), and the problem

is essentiallyv solwved.

At this stage, one polint must be emphasized. While sc far
we have thought of the object as being a semiellipsoid because
of our interest in obtaining physical solutions for this case
eventually, nowhere in setting up the boundarv-value problem
(2.25), and arriving at the integral equation (3.27) did we
actually use the fact that the obiect is a semiellipsoid. Thus
the formulation presented so far is by no means restricted to a
semiellipsoid, but is valid for an object of arbitrary shape,
provided a is interpreted as a characteristic length of such an
object and § its surface. 1t is only when we attempt numerical

solution of the integral equation that we have to assume a specific
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shape for the object in order to simplify calculations. In tune
with this procedure, we shall next consider how to obtain phvsical
quantities such as forces and moments in the case of an object of
arbitrary shape, and nostpone discussion of the numerical scheme

to a later section.



4. TPHYSICAL OQUANTITIES

In this section we shall consider how to obtain the dynamic

pressures, forces and moments, once the integral equation (3.27)

42

is solved numerically and the velocitv potentials uj are determined.

In all cases, the hydrodynamic pressure is obtained from
the corresponding velocity potential by applying Bernoulli's
equation. The forces and moments caused by the action of the
dvnamic pressure on the immersed surface of the object are obtain-
ed bv integration over the surface. TIn the case of an oscillating
rigid object, the forces and moments are resolved into components
in phase with the acceleration and other components in phase
with the velocitv of the object. The former components are
characterized by dimensionless added mass or added moment of
inertia coefficients, whereas the latter components may be de-
scribed in terms of dimensionless linear or angular dameing ceoef-
ficients., When a three~dimensional rigid sutmerged object of
arbitrary shape is held fixed and subjected te the action of a
train of repular waves, three possihle components of force and
three possible components of moment arise. These are simplv
referred to as "wave forces and moments' and their amplitudes are
usually expressed in terms of dimensionless force and moment coef-
ficients. In the case of both the radiation and diffraction

procblems, the final results in the form of dimeunsionless
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coefficients depend on the parameters a, h and cother parameters
characterizing the geometry, which, for a semiellipscid, are
given by b and c.

The hydrodvnamic pressure ﬁ(Q,;,E:t) at anv point (E,;,E)
in the fluid region may be obtained from the linearized form of

Bernoulli’s equation as

T(X,7,258) = —p2(X,7,250) (4.1)

where ¢ is the fluid density and & is the velocitv potential for
the particular problem under consideration. Therefore for ascilla-
tion of the object in its varlous degrees of freedom, the dynamic

pressure is given by

-ict

ﬁj(;,§,5;t) = pga Re{x? aui(x,yrz) tanh{ah) e ],

§=1,2,3,...,6. (4.2)

For the case of wave interaction with the fixed object, the

dvnamic pressure T'(x,v,z;t) is given by

o S —

n'(x,y,z;t) = —-pga Re [ n° a[u7(X.Y,Z) + uo(x,y,Z)] 710t ] (4.3)

where the dimensionless potential Uy for the incident wave is

defined, analogous to u by

?’



auo(x,y,z) = - ioV0(§,§,E)/g5 n° = - Eggb—éibiXI-eiax . (4.4)

cosh ah
We now define dimensionless dynamlc pressures as

0

i s 3=1,2,3,...,6, (a)

1 (x,y,231) = ﬁj(§,§,§;t)/0g5 X
) (4.3)

!'I‘(X,Y,Z;t) = ﬁl(x;_vsz;t)/pg; no . (b)
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In this dissertation, the main interest 1s in the dimensionless

pressure, "', The pressure lI' has a simple physical interpreta-
tion. It is the ratio of the pressure head in feet of liquid to
the amplitude of the incident wave in feet. Since ' is
harmonic with time, we shall use p(x,v,z) to denote the amplitude
of the same and Gp to denote its phase shift with respect to the

phase of the incident wave at the origin 0. Thus, by definition,

n' (x,v,z:t) = Re[p(x,y,z) eiap e—ict] (4.6)
where

p(x,y,z) = fa[u7(x,y,z) + uo(x,y,z)]| 7 4.7
and

5,000,2) = g [ -alug Gy, +wpGeyanl] o @.®



Herc afg is used to denote the argument of a complex variable.
To avold confusion when discussing the diffraction problem,
' (x,v,z:t) will be called the "dimensionless pressure" or
"sressure coefficient", p{(x,v,z) the "pressure amplitude coef-
ficient", and ﬁn the "phase shift of nressure.”

The dvnamic forces ?1 and moments Ej due to the j—-th mode
of oscillation of the object are obtained from the pressure dis-

tribution as

35_1(::) = - [[ ﬁi&,-_?-,é;t) o df, §=1,2,3,...,6, (4.9)
and

E].(t) = -ff ﬁj(r?,:?.é;t) (r x n) dS, j=1,2,3,...,6. (4.10)
- 5

where r repregsents the dimensienal position wector from the point
0' to a point on the surface 5, and dS the dimensional surface
area.

The i-th comnmonent of the dvnamic force (or moment) which
arises due to the f—th mode of oscillation of the object may then

be obtained from (4.9) and (4.10), after simplification, as

Fiﬁ (t) -(1 or a) ffs H.i {x,y,z:t) hi(x’y’z) ds

i

-(1 or a) ;g53 X? a tanh{ah)
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Re[jf uj(x,y,z) hi(x,y,z) ds e_iot ],
S

1,9=1,2,3,...,6 , ' (4.11)

on substituting for ﬁ1 from (4.2). 1In (4.11), for i=1,2,3,
Fii renresents a force and the coefficient 1 should be chosen,
whereas for i=4,3,6, Fii represents a moment and the coefficient

a should be chosen. The subscripts i=1,2 and 3 in F . represent

ij
force components in the x,y and z directions, respectively, and
the subscripts i=4,5 and 6 in Fij represent momenf components
about the x', v' and z' axes, respectively.

The forces (or momrnts) on the bodv in the case of the radia-
tion problem may each be expressed as the sum of two components,

one in vhase with the acceleration and the other in phase with

the wvelocity of the body, in the form
F, (t) = -M,, a X,(t) -N,, a X, (£), £,3=1,2,3,...,6, (4.12)
1] 1] ] 1j d

where Hij and ﬁij represent added mass (or added moment of inertia)
and linear {(or angular) damping coefficients, respectivelv. We
must emphasize that the term 'damping" in the present context

does not bear any relation to viscous damping, but is related to
energy transport. The negative signs are introduced in (4.12)

to account for the fact that by definition the forces and moments
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oppose the motion of the body. Substituting for Xj from (2.2)
and comparing (4.12) with (4.11), we may write the following ex~
pressions for the dimensionless added mass (or added moment of

inertia) and damping coefficients:

=
1l

15 - RQ[.[i]; uj(x,y,z) hi(x,y,z) ds |, 1,3=1,2,3,...,6, (4.13)

N,,
1]

- Im[ff u-(X:Y;Z) hi(X9y’Z) ds i, i,5=1,2,3,...,6. (4.14)
s J ]

Here Im is used to denote the imaginary part of a complex express-
ion and the dimensionless added mass and linear damping ccefficients

are defined by

M N, .
Mg=She W= o, i-1,0,3 (4.15)
J ra J poa i=1,2,3,...,6,

and the dimensionless added moment of inertia and angular damping

coefficients are defined by

M, N, .
Moo=, ow = S, =456 (4.16)
J pa J poa i=1,2,3,...,6.

As previously mentioned, the first subscript i indicates the
direction of the force (or moment) involved and the second sub-
script j dencotes the particular mode of oscillation. Tor a three-

dimensional body of arbitrary shape, the two sets of coefficients
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Mij and Nij may each be arranged in a 6 x 6 matrix. The dimension-
less coefficients Mij and Nij characterize the solution to the
radiation problem.

The dvnamic forces and moments due to the action of a train of

regular incident waves on the fixed rigid object mav be obtained

in a similar manner from the pressure distribution as

FI(t) = - (1 or a) If 0'(x,y,z:t) h,(x,y,z) dS,
1 _S i
i=1,2,3,...,6, (.17

where again the coefficient 1 is chosen for the case of a force,
i.e., when i=1,2,3 and the coefficient a is chosen for the case
of a moment, i.c., when i=4,5,6. Substituting for ' from (4,3)
and simplifving, se may write the dimensionless force angd moment

componentsg as

F;‘(t) = p?-]-[L =t [ 1.17(){,}7,2) + UO(X’Y}Z)]

. -iot .
Ji(x,y,z) as e ], i=1,2,3,...,6, (4.18)
where, bv definition.

?{(t)
Fl(e) = —, 1=1,2,3,...,6. (4.19)
i - -3 o
{1 or a) pga” n
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In {(4.19) the coefficient 1 applies for i=1,2,3 and the coefficient
a for i=4,5,6.

We shall for convenience rewrite (4.18) as

Fi(e) = Pelf} RIS TS S T (4.20)

where’fi represents the amplitude of F{ and ai its phase shift with

respect to the phase of the incident wave at the origin 0. Thus

£, = ’.[.l's alu,(x,y,2) + u (x,v,2)] h, (x,v.2) ds|

1=1,2,3,...,6 , . (4.21)

and

5_1 = a’tg[jfs a[u7(x,y,2) + uo(x,Y,Z)] hi(x,y,Z) dS] ,

i=1,2,3,...,6 . (4.22)

Tn general fi may be called the wave force or moment coefficient
and di the phase shift of the wave force or moment, as the case
may be. The coefficients f£ together with the phase shifts Gi
completely characterize the forces and moments acting on a fixed
object of arbitrary shape.

For a fixed semiellipsoid, because of symmetry, the only non-

zero force coefficients are f! and f! which correspond to forces

1 2



in the x and y directions respectively. In this dissertation, for
easy identification, these will be denoted by fx and i’:,r and called
the "horizontal and vertical force coefficients", respectively.
S5imilarly, the only non-zero moment coefficient is fé which
corresponds to a moment about the z"-axis. Therefore it will be
denoted by m and simply called the "moment coefficient." The
phase shifts ﬁl, 62 and 66 will be denoted by 5x, Gy and Gm and
called the "phase shifts for the horizontal force, vertical force

and moment", respectively. Summing up, we use the notation

hereafter that

(4.23)

]
n

8 = & ¢ = §6,, and 6§ (b)
2 m

In view of the fact that for a fixed semiellipsoid fx’ fy and "
are the only non-zero force and moment coefficients, we shall, for
applying Haskind's relations, concern ourselves hereafter mainly
with the cases j=1,2, and 6, i.e., surge, heave and pitch for am
oscillating ellipsoid.

Haskind's relations as well as the energy check are developed

in Appendix C.

50
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5. TRANSFORMATION OF COORDINATES

The body under consideration in this dissertation is 1n the
form of an ¢llipsoid. It is therefore convenient to work the
problem in terms of ellipsoidal polar coordinates which conform
to the shape of the bodv. These coordinates are defined on the

wsurface of the bodv as follows:

x =cos a 8in ¢, y +h =¢ cos ¢, = b sin o sin @

(5.1)

it

£E=c¢o5 B 8iny, n+ h=2c¢ccos P, ¢ b sin 8 sin ¢

Thus on the surface S, we associate the new coordinates (a,d) with
the point (x,y,z} and (B,y)} with the peint (£,n,2). The co-
ordinates o and B represent azimuth angles while ¢ and ¢ re-

present vertical angles, as shown in figure 5.

Figure 3. Transformation of coordinates.



Since the equation of the surface of the ellipsoid {s given

by
| 2 2 .
S(x,v,z) = %2 Az (5.2)
2 ¥

the unit normal vector n is given by

{x + j (Zgﬁ) +k EE
~ Vs C b
R — : (5.3)
2 (v+h} z7,1/2
[x" + AT 4 2
4 4
C b

An expression is derived next for the area of an elemental
surface dS of the ellipsoid in terms of the new coordinates.
Suppose the elemental strip dS5 is so chosen that its projection
dSK on the (v,z)-plane is a rectangular strip with sides dy and

dz, as shown in figure 6. Then

ds_ = dv dz = dS (a-1) (5.4)
s0 that
dv dz 2 (wmm)? 2%
as = v dz x+'—“'-——+'-'—] . (5.5)
X rd bA

Note that dy and dz are increments in the coordinates obtained by
moving along the surface. Therefore if 2z were held fixed and vy

alone varied, then from {5.1)

dy = -c¢ sin ¢ d¢ . (5.6)

32



ds
dy

dz

Figure 6. Determination of dS.

Similarly if vy were held fixed and z alone varied,
dz = h cos o sin ¢ do . (5.7}

Therefore, on substitution intu¢ (5.5), and simplification, we have

a8 = - be sin ¢ T(a,d) d¢ dua (5.8)
whera
2 ain’a 2 coq2¢ 1/2
T(x,d) = [ (cos®a + B8y sin’e +-—€?4-] ) (5.9)
b c

Since we are using the convention that (a,4) is a particular
peint, and {B,y) any general point, on the surface 5, tne coordi-
nates o and ¢ will be replaced by 3 and ¢, respectively, in the

expression for d5 to yield

dS = -bc sin ¢ T(B,¥) Ay dB . (5.8")
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The integral equation (3.27) can now be transformed, using

the new coordinates, as

be 27 /2 G
-0 (a,p) + o £,8,9) —(a,d:8,¢) T(B,¥) sin v du d8
1 2 R=0 = J tn
= 2 Hj(u,¢) {(5.10)

where the functions Hj(u,¢) are to be obtained from the functions
hj(x,y,z) given in (2.26) by transformation of coordinates. The
new notation is introduced to avoid confusion with the relative
depth h when the subscript j is dropped in subsequent sections.

From (5.3), in terms of the new coordinates,

N S . + cos_¢ ~ sin a sin ¢
n To. 89 [i cos a sin ¢ + j - + K . 1 . (5.11)

Therefore the functiens h, {x,v,2z) given in (2.26) tvransform as

3

follows:

H (as) = cos a sin ¢ Hy (0, 6) = _Los ¢ __

Ty} T e T(a,4)
gin o sin ¢ c2~b2 sina sin ¢ cos ¢
H3(u’¢) = "B"T(?.:E)‘ ] H4(3,¢) = be I T(0,¢) (5-12)
H_( ) = RE:l sin a cos o sin2¢ H (o,0) = l—c2 cos o $in ¢ cos
5 *.0) = b T, ¢) ’ 6 » ¢ c T, )
eia cos o sin ¢ cos ¢
H7(u,¢) = T{are) vosh ah [ . sinh(ac cos ¢)

+ i cos o sin ¢ cosh(ac cos ¢)]
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6. NUMERICAL PROCEDURE FOR A SEMIELLIPSOID

In this section the numerical procedure for a semiellipsoid
is first outlined briefly and then details of the procedure are
given. ©Since additional subscripts are introduced in this section,
the subscrint j, which corresponds to the mode of oscillation or
scatter, is dropped from uj, fj and Hj in this section and
Section 7. Note that the procedures given hereafter are applied
only to the four problems corresponding to surge, heave, pitch and

scatter (j=1,2,6 and 7, respectively),
Qutline of the Procedure

The approach to the numerical solution of the integral equa-
tion (5.10) mainly consists of replacing the integral equation bv
a finite set of linear equations. Since only two ellipsoidal
coordinates are needed to represent a point on the surface §, we
may imagine a two-dimensional surface S{(8,y) on the (8,¢)-plane
corresponding to the three~dimen=zional surface S{&,n,z) (refer
figure 7). The surface S(8,¢) is actually a rectangle with sides of
length 27 and n/2 respectively. Tt is next divided into a grid of
4N2 squares with sides of length s=1/2N, parallel to the 3 and v
axes respectively, where N is a suitably chosen positive integer.
Thus N characterizes the grid size, a smaller N indicating a
coarser grid and a larger N, a finer grid. The centers of the

various squares are called "nodal' or "pivotal points.'" We attemnt
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(a) Numerical grid in three dimensions.

v
Nodal points
~ s -
T T T T T T T T T T T T T
- . - - ./ -
_L . N . . . . . . . . . . . + . N '_.4-—"‘5(8,‘,())
5 - - - L3 . ‘. - 4 r . + . [ . L] . - »
l iy
0 T 2% ]

(b) Numerical grid in (B,9p)-plane.
Figure 7. Numerical grid for N=5,

to satisfy the integral equation at onlvy the 4N2 nodal points in-
stead of all the points of the surface of the semiellipsoid. A
unique index k is associated with any particular nodal point (a,9)
and the square element surrounding it; and another index £ with any

general nodal point (2,1} and the square element surrcunding it.
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For example, the coordinates of the nodal point &k are denoted by
M and ¢k’ and those for the nodal point 2 by 62 and ¥,, respec-
2

tively, While k and L may assmme integer values from 1 to 4N, a

and 2 may each assume only 4N unique values. Similarly, ¢

g and ¥

k
may each agsume oniv N unique values,

Since the distribution function £(B,%) is well-behaved, we may
assume that its average value over each square clement is approxi-
mately equal to the value at the nodal point of the element. Thus

. i . . 2 ..
the integral equation (5.10) i{s now rewritten as a set of 4N~ linear
equations as follows:

AN*
e F Z £ Kea = M, k=1,2,3,...,4N0° | (6.1)
=1

where

fk = f(ak,ﬁk) , (a)

(6.2)
fz = f(3£,¢?) , {b)
8 s
B+ + 5
be ¢ 2 wﬁ 2 sg
Kkﬂ, = :j:;_ : Sf s i_n(ak,ql\;ﬁ,w) T(dsq’)
I R )
sin ¢ dw di , (6.7)

and

H, = H(uk,¢k) . (6.4)
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Equation (6.1) may now be set up as a matrix equation. Thus

[Kk£ - ékil [fﬁl = [2Hk] (6.5)
where Gkﬁ is the Kronecker delta function defined such that
akQ =] for k = ¢
(6.6)
=0 for k # 2.

Note that the first matrix on the left hand side of (6.5) is a
square matrix. Its elements may be computed numerically from (6.3)
since G is known from (3.19). The other two matrices in the
equation are column matrices, Of these, the elements of [2Hk] can
be computed from (5.12) so that [fﬂ] is the only unknown. On solv-
ing (b.5) by a special computer subroutine for the unknown distri-

bution function, we obtain the values of f at the nodal points as

-1
[fQ] = [Kkg‘ - ‘5“] [2Hk] . (6.7)

Once the distribution function is known, the velocity potential
u may be obtained from the representation (3.17), which may be

written in ellipscidal coordinates as

be 2 7/2
ula,d) = EFIB—O j:p—o f(B,¥) ¢(o,9;8,¢) T(B,y) sin ¢

dy dg . (6.8)



As far as the determination of the presgsures, forces, ete., is
concerned, we saw in Section 4 that it is necessary to know the
velocity potential u only on the surface of the ellipsoid, In

the numerical procedure u is determined at only the nodal points of
the surface instend of all the points. ¥Following the same indicial

notation as before, we write (6,8) as

49
_ 2
u, = foM o, s k=1,2,3,... 40", (6.9)
=1
where
= u(ak,¢k) . (6.10)

- 5 5

3 = el
v, - [0 ¢9_+2G( $8,0) T(R,¥)
‘kﬂ, h dor Ja _f " g uk’lbk’ ,'JJ R

Lid
oo 2 L2

sin § dy AR . (6.11)

Equation (6.9) may be rewritten as a mpatrix equation. Thus

[u ) = M0 T£,1 . (6.12)

The elements of the square matrix M . may be computed numerically

k%
from (6.11) since G is known from (3.19). The column matrix fi
is already given by (6,7). Therefore the velocity potential, u,

corresponding to the nodal popints is obtained from (6,12} as a

59
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column matrix, by matrix multiplication. Once u is known, the
physical quantities of interest such as pressures, forces, etc.,
may be obtained numerically, using the relations given in Section &,

The numerical procedure for the problem, applied in a straight-
forward manner, hzs been explained so far. 1In practice this pro-
cedure is somewhat modified. For a semiellipsoid, the distribution
function f is symmetric about the (x,y)-plane in all four cases.
Even greater symmetry exists for f in the case of the three radia-
tion problems, but is not utilized in this dissertation since the
radiation and scatter problems are solved simultaneously, using a
common numerical procedure. 1In view of the symmetry of f, it is
necessary to solve the integral equation over only half of the
surface 5., The resulting modifications in the numerical procedure
are explained later on.

The rest of this section is devoted mainly to the numerical
evaluation of the matrix elements K

N and M 2 which involve 3G/on

k

and G, respectively, Because 3G/5n and G are quite similar, we

k

consider them simultaneously, where necessary,

Matrix Elements Mkﬂ

We use for G the form (3.19) which is rewritten here, for con-

venience, as

IH

+ o5+ G**(x,y,23E,n,8) (6.13)

|

G(x,y,23&,n,z) =

=]
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where

o -kh
_ {x+v) e cosh k(nt+h)
fk . =
G**(x,y,z;£,n,8) = 2 4% L:o (¢ sinh kh-v cosh rh)

cosh «(y+h) JO(Krl) dk

2 2
4 g @V ;°Sh a(n*h) cosh a(y+h) 3 tar)) (6.14)

ah -~ vzh + v

As mentiomed previously, 1/R becomes singular as the point (§,n,Z7)
approaches (x,y,z)} and, in general, varies rapidly in the neighbour-
hood of (x,y,z). On the other hand, 1/R' and G** are both regular
everywhere. However , the former varies rapidly whereas the latter
varies slowly. 1In view of these features the three parts of the
Green's function in (6.13) are integrated separately, using
different methods. We take up these three integrals, one by one,
next.

In terms of the ellipsoidal coordinates, R may be written from

(3.20) as

R(a,9;8,9) = {(cos a sin ¢-cos B sin w)z + cz(cos ¢—cosw)2

+ bz(sin @ sin ¢-sin B sin w}2]1/2

{6.15)
Because of the rapidly varying nature of 1/R, for purposes of

accuracy, a nine point Simpson's method is used to integrate 1/R
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over all the elements & except the element 2=k. Thus we approximate

the surface integral over the element % as

B+ 2,y + 32
be ) 2 2 2 1 .
br f;s - fp - g Ko, 6, 38,0) T(B,¥) sin ¥ dy d8

R NP
bes E: P g
Thnw : T(R , gin
a7 L Lu RGaenb w0y T(Ppvy) ein vy
(valid for 2 # k)

where Bp and wq are defined for the R-th element as

™
1]

B, + (p-2) p=1,2,3, (a)

wlw
-

¥ q=l’2,3’ (b)

=
1

v, * (0-2)

wlin

(6.16)

(6.17)

and the Simpson's numerical coefficients Cp and Dq are given by

6.18)

The numerical metheod given above breaks down for the singular

element (case %=k) since, close to the singularity, the 1/R term

tends to infinity. Therefore a different scheme has to be used for

evaluating the surface integral on the left hand side of (6.16)



63

for such cases. Such a scheme is described in a subsequent
paragraph,

As for the second integral in ng, since 1/R' varies rapidly,
we evaluate its surface imtegral also, by a nine point Simpson's
method, in a manner similar to that given in (6.16). Note that in

ellipsoidal coordinates R' is given from (3.21) as

R'(a,¢:8,¢) = [(cos ¢ sin ¢—-cos B sin w)z

1/2

+ cz(cos p+cos w)z + bz(sin o sin ¢-sin B sin w)z} (6.19)

and that since 1/R' is regular everywhere, the Simpson's method is
valid for all 2.

As for the third integral in M _, since G** js not only regular

k2
everywhere, but also varies slowly, its surface integral over any

element £ is approximated by multiplying the value of the integrand

at the nodal point (Bl’wﬂ) by the area of the element. Thus

be g 2f¥% T2 _ ‘
4m [;3 _ _5;_[ s G**(ak,'bk,ﬁ,tb) T(B,p) sin ¢ d¥ dB
g 27 %2 T 2

bes

&= 4w G**(ak’(bk;si'wl) T(Bﬂ,"pg) sin U’gs

(valid for all %) (6.20)

where in terms of the new coordinates
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(+v) e-Kh cosh{xc cos ¢)

{x sinh xh-v cosh «h)

G (a,p;8,4) = 2 PV f
K=

cosh{kc cos ¢) JO(Krl) dx

Zw(az—uz) cosh{ac cos ¢) cosh{ac cos ¢)

+ i Jo(arl) (6.21)

azh-v2h+v

and rl is obtained from (3.22) as

rl(a,¢;8,w) = [{cos a sin ¢—chs B sin w)z

1/2

+ bz(sin a sin ¢-sin R sin w)z] {6.22)

We note here that the numerical integration of the infinite in-
tegral in (6.21) poses certain problems. These are discussed in a

subsequent paragraph.

Matrix Elements KkR

Following a procedure similar to that used for G, we rewrite

3G/3n ocecurring in (6.3) as

% _ 3 1. .8 1. .92
—_— — (= — — Gk%*
n -~ an ® tEa GO fan O (6.23)

The three terms on the right will be integrated separately. Noting

that the normal derivative is taken at the point (o,¢), it may be



65

shown from the expression for R given in (3.20), after considerable

simplification, that

= ) (@,b38,0) = = ————— [1-cos (a-B) sin B sin ¥
R T(a,¢)

- cos ¢ cos ¢ . (6.24)

Since 1/R? varies rapidly, we use the nine point Simpson’s method
for numerical integratiﬁn of 3(1/R)/5n for all elements % except
2=k. In the latter case, an alternate numerical scheme is used. It
is described in a subsequent paragraph.

From (3.21) the normal derivative of 1/R' at any point (u,¢)

can be shown to bhe given by

i l ) (ﬁ;‘i’;sﬂp) = - 3 l
R'™ T{a,d)

5= G [l-cos(a-B) sin B sin ¢

+ cos ¢ cos Y] . (6.25)

Note that the expression on the right is regular everywhere. More~
over, since l/R'3 varies rapidly, we use the nine point Simpson's
method for integration of 3(1/R")/on for all elements 2.

In terms of ellipsoidal coordinates, 3G**/3n at any point

{(¢,9) is given by
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o0 -ich
SGAN . o k(xtv) e K cosh(xc cos ¥)
an (o, ¢38,4) -2 W -jlgo (¢ sinh «h-v cosh xh) T(a,¢)

2 Iy (ery)
[ {sin"¢ - cos(a~B) sin ¢ sin ¥} cosh(ke cos §) —
. 1
- EEE—E- sinh{(kec cos 4) JO(Krl) ] dk
2na( 2—vz) h{ Y) 2
_y 2ra(a > 2cos ac cos { {sin? ¢
(a"h-v h+v) T(o,4) ,
Jl(arl)
~ cos(a-B) sin ¢ sin Ylcosh(ac cos ¢) —
1
- Los ¢ sinh{ac cos 4) Jo(arl) ] . (6.26)

Since aG**/3n 1is, like G**, regular everywhere and varies
slowly, we approximate the surface Integral corresponding to 1it,
over any element 2, by the product of the surface area of the
element and the value of the integrand at the nodal point (ﬁ£,¢£).
For the case %=k, note that as r, > o, Jl(xrl)/rl and Jl(arl)/r1
tend to k/2 and a/2 respectively, whereas Jo(xrl) and Jo(arl) tend
to unity. Also, the integral in (6.26) poses numerical problems
similar te those for the intégral in (6.21). So the two integrals

are evaluated by using the same methods,
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Special Scheme for Integrating 1/R and 3(1/R)/2n over the Singular

Element (case 2=k)

Tt was indicated previously that Simpson's method canmot be
used for the singular element containing the nodal point (ak,¢k),
i.e. for Lhe case, ?=k. This is because cven though the integrals
are finite, the 1/R and 3(1/R)/an terms become singular as (B,0)
approaches (ak,¢k) and pose problems in numerical integration. The
integrale in these cases are "improper" and have to be treated by
4 s ccial scheme. Kim (1964a; Appendix) has given in detail a
methodl for treating such integrals., Therefore only the idea behind
Lhe scheme and the final results are indicated here briefly.

For each of the inteprals menticned, by using Taylor's series
expansion around the singular point (ak,¢k) and binomial expansion,
we can show that the integrand consists mainly of three parts:

(i) a singular part which varies as 1/8 where ¢ is the distance in
the (3,9)-plane between the points (8,)) and (ak,¢k), (ii) an
indeterminate part which depends on the angle of approach from
(R,0) to (ak,¢k), i.e. on (u;—q:k)/(s-ak), and (1ii) terms of higher
order. One of the reasons for the complexity of the prohlem is
that the surface S(x,v.z) of the object is curved and not plane in
the neighborhood of the singularity. In order tc overcome the
numerical problems and ohtain good accuracy, parts (i) and (ii) are

integrated by using a special scheme of plane polar coordinates
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valid around the singularity. The higher order terms, on the other

hand, are separated and integrated using Simpson's nine point method,

noting that they vanish when (B,y) = (ak,¢k).

The final results of the gpecial scheme are given as follows.

The integral of (1/R) for the case 2=k is evaluated as

s
o ¢ = :
be f k f k2 1 )
I, = — s 8 . T(B,lb) sin ¢ d1]') ds
1 4m ak -E ¢k - E- R(Gk,¢k,5s¢)
bes 4
Ton ) 5 500 ¢y Tloysdy)

[ [“/4 Isec 1| d1
. 4=1/b [E(cos T, sin T)+C2 SinzT sin2¢k]1/2

4
+ [3” [ese 1] Ar ]
Jr/a [E{cus T, sin -r)+c2 sin21 sinz{bklll2

[¥5

3
£y )

p:

q[ 1
R(ak,¢k;3p,wq)

o

—

q

1
2 2 .2 1/2 ]
[E(Bp—uk,wq—¢k)+n (wq—¢k) sin ¢k}

T(ﬁp,¢q) gin ¢q

(6.27)
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where
E(Aa,0¢) 5 (Ao sin o sin ¢ - Ad cos o cos ¢)2

+ bz(ﬁa cos o sin ¢ + A¢ sin a cos ¢)2 . (6.28)

Equation (6.27) is the counterpart of (6.16), valid for the case
L=k,
Similarly, the integral of 3(1/R)/3n for the case f=k is

evaluated as

s s
+ 2,0 +
bc k 2 k 2 3 1
12 = 9, e -5)y -8 30 (ﬁ) T(B,¢) sin y dp dp
k 27k 2
' 2
-~ bes 2
== an o 8in oy
[ f“ﬂ' lsec ‘III (coszT sin2¢k+sin2'f) dr
-1/4 [E(cos 1, sin T)+c2 sin21 5-.in2¢1>k]3/2
IBHM lese ] (cosz'r sin2¢k+sin2'r) dt ]
+ -
mlh [E(cos T, sin T)+c2 sinZT sin2¢k]3/2
& e
DI
= % U [Ra,658 0010
p=l g=1 Ao Py p’*q
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[l-cos(uk—Bp) sin ¢k sin wq - Ccos ¢k cos wq]

1
2 2

| 2 .2 2
(B =1)” sin’t, + (¥ -4, ]
. 2 2, 3/2

T(B ¢ )

T(a sin W, | - (6.29)

8
Note that corresponding to p = q = 2, the integrand in the Simpson's
formula is set to zero, in the numerical procedure.

In (6.27) and (6.29), for the integrals involving T, the
integrands become indeterminate at the midpoint of each integration
range and pose a problem in numerical evaluation, even though the
integrals are finite. To avoid this, the T-integration is carried
out to within 1% accuracy, using Simpson's three-eighths ruie.
Details of this method are given in connection with the infinite

integrals.
Numerical Evaluation of the Infinite Integrals in G** and 3G**/3n

As indicated previocusly, the infinite integrals in G** and
3G**/3n pose certain numerical problems. In each case, the
denominator of the integrand tends to zero when k o) where KO

is the solution of the equation



¥ tanh (kh) - v = 0. {6.30)

{(Since v = a tanh (ah), note that k. is equal to a.) In view of

0
this, the principal value of the integral must be taken. Moreover,
the upper limit of the Integral is infinite, so that for numerical
purposes it has to he replaced by a Suitably large number such that
convergence is agsured. The procedures used in overcoming these
problems are described briefly next. They are taken directly from
Monacella (1966).

The singularity Kk = kK The basic idea of the procedure con-

0.

sists in recognizing that the integrands are singular like
1/(K—KO), subtracting out the singularity l/(K-KO) and then in-
tegrating the singularity analytically and the rest of the integral
numerically. Consider first the integral in G**, 1If it is denoted

by I then from (6.21)

3:

I. = PV T (k) e_Kh cosh(kec cos ¥) cosh(kec cos ¢)
3 k=0 (¢ sinh «h-v cosh kh)

JO(Krl) de ' {(6.31)

Note that as far as the integration is concerned, the integrands
are functions of « only since everything else is fixed. Therefore,

for convenience, we define

7L



P (k) = (k) e~ P cogh(ke cos ) °°52§:ﬁ ?E;)¢) Jolery) 5 (6.32)

and
Py () (k=kp)
Ql(K) ™ tanh{kh)-v v (6.33)
The integral 13 may now be rewrltten as
['” Q, (<)
I, = PU. (=0 rg dk
2c,, Q, (x)-Q, (k) 2«
- ]F 0L~ 1 0 g tq k| PV 0 _d
Jo K=Kq 1*°0 Je=0 ¥%p
Q)
+ de (6.34)
A2k K—KO

0

As K = Koo both the numerator and the denominator of the first in-
tegral on the right vanish so that it becomes indeterminate, but
not singular. It is finite and its value can be established by
1'Hospital's rule, if necessary. The integrand of the second
integral becomes singular at thig point and therefore the principal
value of the integral has to be taken. As for the third integral,
since the singularity K=K is outside the integratiom range, there
is no problem involved in numerical evaluation.

Let us now consider the second integral. By definition,
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2K K. =£ 2K
PV [ 0 £E—=1im. j 0 K‘i: + I’ 0 Kfi. . (6.35)
Jre=0 ’ 0 e>0 | 0 0 . K0+€ 0

On carrying out the integrations, setting the limits, and simplify-

ing, we have the result

2K(] ¢ ‘
PV f L. =0 . (6.36)
k=0 F7%g
Therefore
20 Q. (k)-Q, (k) T Q)
0
%-f L 190 m+f L o4 . (6.37)
k=0 K=Kq ZKO K=Kg

Thus the singularity K=Ky is removed and both the remaining integrals
are well-behaved, and can be numerically evaluated.
We next determine Ql(zo) by using 1'Hospital's rule as

B (x) (cxp)
k tanh{xh}-v

Ql(xo) = 1im.

K+K0
P,(k.) k
1 20 > 0 i _ (6.38)
h[K0 - 4y ]
If the infinite integral in 3G**/3n is denoted by I,, then by

4

following a procedure similar to that for 13, we may obtain for I&

the final result

2K o .
0 Q,(k)-0,(k.) Q, (x)
I, = [ 2 2 0 d.c+f2 2 de (6.39)

A=) K'—-Ko KO K—'KO
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where
) = PZ(K) (K—KO) (6.40)
QZ ) ¥k tanh{xh)-v °? *
-xh
- _xf{kdv) e : cosh{ke cos W) (. 2
Z(K) =TT 8) cosh Teh) [ {sin” ¢
Jl(Krl)
- cos{a~R) sin ¢ sin Y} cosh(kc cos o) ——
1
- Eﬁg_ﬂ sinh{ke cos ¢) JO(Krl) ] . (6.41)
and
P.{x) x :
Q, (k) = —tm . | (6.42)
h[K0 —y +y] :

Numerical integration of the integfals, 13 and 14. We first

consider the integration of the finite integral in (6.37) and (6,39)

and then pass on to the infinite integral. Since the integrals

I3 and 14 are similar in form, the procedure ig given for I3

The integrand in the finite integral in (6.37) becomes in-

only.

determinate as K>, even though the value of the integral is

finite. This poses a problem in numerical integration. In order
to overcome the same, Simpson's three-eighths rule is used. 1In
this procedure, it is not necessary to evaluate the integrand at

K=K., because the ordinate thexe is never used in the integration.

0’
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The integration range (0 to ZKO) is divided into 6n+3 equal intervals
where n is a suitably chosen positive integer, usually 1 to start
with., The integrand is evaluated at the ends of each interval and
the integral is determined from the weighted average of the 6n+4
ordinates. The number of intervals are next increased by 6, the
calculation is repeated and the finai result is compared with that
obtained previously, to see 1f the two results are sufficiently
close, as determined by a suitably chosen convergence criterion. I
they are, the process 1s stopped and the second result is assumed

to be the value of the integral. If not, the iteration process

is continued until the results at the beginning and end of an
iteration satisfy the convergence criterion. Then the result at

the end of the last iteration is assumed to be the value of the

integral. In either case, the interval Ak=Ak. that provides

0
convergence is stored for future use in connection with the in-
finite integral.

The ixain problem with the integral with an infinite upper
limit is to carry out the numerical integration up to a suitably
large number (as an upper 1limit) such that convergence is ensured.

For this purpose the following scheme is adopted. The integral is

written in the form

"“‘ Q) (x) =
Alks K fanh choy 9° ° X L (6.43)

n=1
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where
“nt1 Ql(K)
In - ;. « tanh xh-v dic (6.44)
n
and
— ‘) = 3
<1 e and Kol K +u, n=1,2,3,.,,.

u is chosen as follows. If 1 < 2Acy, u is chosen to be 28k,. If

0"
1= ZAKO, 1 is chosen to be the highest integral multiple of ZAKO
that is less than one. Here AKO is the mesh size that has given
convergence for the finite integral. Each of the integrals In is
evaluated by the usual Simpson's one-third rule using the mesh size

M

Ak.. The partial sum § = 5: In is assumed to be the value of

n M
n=1
the infinite integral, where M is chosen such that the ratio

1IM/SM_1[ is less than a suitably chosen convergence criterion.

The actual convergence criteria used in obtaining the results
are as follows. In the case of the finite integrals between the
limits «=0 and ZKO, if the value of the integral obtained by using
bnt+4 ordinates is denoted by I{(n), the convergence criterion used
is that

lI(n+l)—I(n)

o) | <17 . (6.45)

Similarly in the case of the infinite integrals, the criterion used

is that
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SM-1

< 1% (6.46)

with the notation previously defined. Since these criteria are
arbitrary, to determine their effect on convergence, the accuracy
was changed in a few cases to 0.5% and the final results were
compared, Negligible differences were found in the final results
due to the change. Thus we are assured of the convergence of the
integrals as well as the accuracy of the results obtained witﬁ the

criteria given in (6.45) and (6.46).
Symmetry in the Case of a Semiellipsoid

As previously mentioned, the distribution function f is
symmetric about the (£,n)-plane for the four problems being con-

sidered. This symmetry may be expressed as

f(B,lP) = f(‘B,‘b) . (6'47)

As a result, it i1s necessary to find the distribution function f
over only one half of the surface S(B,y), say, the half for which
O0<g<m. Therefore in the numerical scheme for finding f we have
to consider only 2N2 linear equations instead of 4N2 equations,

Since T(B,¥) is even in B, we may, using (6.47), write
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2m n/2 .
be oG .
> £(8,9) —(a,438,¥) T(B,¥) sin ¢ dy dB
2 j£;=0 .,;=0 on

T w/2
_ bc ’ ’ 3G . 36 -
= Zﬂ_ Je=0 =0 f(B,lP)[ an(d,%ﬂ,w) + an(ascbs lep)]

T(B,¥) sin ¢ dy dB . (6.48)

The physical interpretation of (6.48) is that at any point (a,¢)
the effects of a source at (B,0) and.another source at (-B,yp) are
considered simultaneously. The second source is the mirror image
of the first in the (Z,n)-plane.

Similarly, the representation (6.8) for the velocity potential

at {(o,¢) may be rewritten as

b m w2
ula,$) = Z%_.j;=0 JLFO E(B,¥) [G(o,;8,0) + G(a,¢3-8,14)]
T(B,y} sin ¢ d¢ dB . (6.49)

In view of the preceding, equations (6.1), (6.5), (6.7), (6.9)

and {6.12) are modified as

N3
2

fk‘+ Z fﬂ' [Kk.:?a-i“ Kk.ﬂ.] ZHk » k=1,2,3,...,2N 3 (6.1")
=1
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[(R o+ K" ,) ~ 6,1 [£,] = [2 1] 6.5
[£,3 = [k _*+ K, - 8,170 12 1] (6.7")
2n°
' 2 '
u = z £00, + M), k=1,2,3,... 28, (6.9")
L=1
and
(v 0 =[m, +¥' 11£] , (6.12")

where K'kl is obtained by replacing the argument B of 3G/dn in

(6.3} by -8. Similarly M’ is obtained by replacing the argument

kil
B of G in (6.11) by -B.

The matrix elements K'kz and M'kz are evaluated numerically
using the same methods employed for K., and M ,, respectively.
There is however one important difference. The 3(1/R)/¥n term in

L : L]
K ke and the (1/R) term in M K

because the image singularity (-B,%) can never coincide with the

, never become singular. This is

particular point (ak,¢k), as they are on opposite sides of the
(£,n)-plane. Therefore the numerical integration of the terms
mentjoned can be done using the nine point Simpson's method for all

elements 2. No special scheme is necessary for the case 2=k.
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7. SIMPLIFICATION OF CALCULATIONS FOR A HALF SPHEROID

The numericai scheme presented in Section & involves, for a
semiellipscid, much computational work, even after the symmetry of
the distribution function, f, is utilized. For example, for N=3,
which is the grid size used in obtaining most of the data presented
in this dissertation, the matrices corresponding to the Green's
function and its derivative are each of size 50 x 50. Thus 2500
elements of each of the matrices [Kk£]’ [K'kﬁl’ [MkR] and {M'kg]
have to be evaluated. The singular.cases of {Kki] and [ng] have
to be calculated by using a special scheme. Moreover, for each
element, the numerical evaluation of the infinite integral takes
considerable computer time because it involves iteration. In
addition, the integrals involve Bessel functions which themselvas
have to be calculated by a series approach. 1In view of these
factors, the time and cost involved 1n solving numerically the
diffraction problem for a semiellipsoid, for a given set of
parameters a, h, b and ¢, become prohibitive even on a high speed
digital computer such as the IBM 360/65 system used, at least for
the particular form of Green's function chosen. Hence it was
decided to restrict the numerical computations to a half spheroid,
axisymmetric about the wvertical axis (case b=1l), so that by
utilizing the axisymmetric nature of the object most of the

numérical calculations could be kept to the barest minimum, and
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the results stored and used over and again. Thus repetition of
the same calculations was avoided and the computer time was reduced
to only a fraction of what it would have been otherwise.

In what follows, only the basic ideas behind the simplifica-
tions are given., For the sake of brevity, the details are kept to
a minimum. Since much of the computational time is spent on the
evaluation of the infinite integrals, it was decided to concentrate
on all possible ways of reducing the computations connected with
them,

Consider, for example, the infinite integral part in 14. From

(6.40) and (6.41) it may be written in the form

J[. Q2(K) dic = {sin2¢—cos(a-8) sin ¢ sin Y}
2K‘0 K"‘KO T(u!¢) rl

fm [ K (K+v) B_Kh cosh(kc cos ¢) cosh(kc cos V)
2

Kq K tanh «h=-v cosh xh
kh

_ _cos ¢ ® K(k+v) e
Jl(Krl)] dr cT(a,d) ¢ [ k tanh kh=v
0

sinh{kc cos ¢)
cosh kh

cosh{kc cos ¢) JO(Krl) ] dk . (7.1)

The procedure used consisted of evaluating the two integrals on the
right separately, storing the results and when necessary, multiply-
ing them with the other factors, which are functions only of the

coordinates, and using them. If the coordinates were not involved
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in the hyperbolic and Bessel fumctions, the integrals could have
been calculated once for all. As it is, the integration had to be
carried out for each set of coordinates. WNote that, for b=1l, the

expressgion for r., simplifies to

1

fl(a,¢;8,¢) = [sin2¢+sin2¢~2 gin ¢ sin ¢ cos(u—ﬁ)]l/z . (7.2)

Thus, r. is a function of only ¢, ¢ and |a—8| rather than all the

1
four variables ¢, ¢y, o and B. Therefore the two integrands are
functions of ¢, P and |a-B|, besideg ¥k, Once the integration with
respect to k is carried out, the results are functions of ¢, ¥

and |a—B| only. Further, since in the numerical procedure only

the nodal points are considered, each of the integrals is a function

of ¢k’ wz and |uk—82 Suppose we carry out the integration of the
first integral for all possible combinations of these three

variables. Then we may imagine the results to be stored in a

three-dimensional matrix of size N x N x 2N corresponding to the

unique values of ¢k’ wz, and [ak-B . However, since the first
integral is symmetric in ¢ and Y, it is necessary to evaluate the
diagonal elements and only half of the remaining elements. Thus
for N=5, instead of the integral being computed 2500 times by
going in a straightforward manner, it was evaluated omnly 150

times, by understanding its functional dependence, As far as the

second integral is concerned, since it is not symmetric in ¢ and ¢,
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all the 250 elements of the corresponding matrix had to be
evaluated.
The approach just described was used also in connection with

the finite integral part in I, and the two integrals in I As

3

far as the infinite integrals in matrix elements K'k2 and M'kR

4

are concerned, note that if we congider the complete half spheroid,
there is no basic difference between rl(uk’¢k’82’w£) and
rl(uk’¢k;_B£’¢R) since they both represent the horizontal distance
between any two nodal points.

It may be shown similarly that for the half spheroid R is a
function only of ¢, ¢ and |u—B! and is symmetric in ¢ and ¢, and
that there is no basic difference between R and R' if the complete
spheroid were considered. Similar ideas can be applied to 3(1/R)/on
and 3a(1/R')/on. To reduce computation time, functions such as s
R, Jo(arl), Jl(arl), etc., were computed once for all at the
beginning and stored in the form of three~dimensional matrices.
Several other ideas were also used to reduce computation time,
wherever possible.

The description of the numerical evaluation and integration of
9G/3n and G is now complete. We note that the solution of the
matrix equation (6.5') on the computer was dome by using a special
computer subroutine, valid for solution of matrix equations involv-
ing complex matrices. This subroutine called ''COMAT" was originally

prepared by Mrs., Sharon Good of the David Taylor Model Basin staff.
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It can be applied for sizes of [(Kkﬁ + K'kz) - 6k£] upto 100 x 100.
This limits the grid size parameter N to & maximum value of 7.
However, because of storage limitations of the IBM 360/65 system
employed, the maximum value of N that could be used with the
present program was 0.

Once the velocity potentials u are obtained as a column matrix
corresponding to the nodal points on one half of the surface 8§, the
physical parameters of interest are determined from the expressions
given in Section 4. It is to be noted that the pressure distribu-
tion is symmetric about the (x,y)-plane for all the four problems
considered. This fact is utilized in the calculation of the various
other physical parameters. The forces and moments and their phase
shifts for the d°ffraction problem, and the dawping and added mass
coefficients for the radiation problem are determined from the
veloeity potentials Ly using riraightforward numerical integration.
Thus the value of any snrface integral over a grid element is
approximated by the product of the area of the element and the

value of the integrand at the nodal point.
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8. ASYMPTOTIC SOLUTION AND EXPERIMENTS FOR A HEMISPHERE

Asymptotic Solution for a Hemisphere

From the theoretical point of wview it is of interest to
develop analytically an asymptotic solution for the diffraction
problem for a half spheroid, valid at least over certain ranges
of the parameters h, a and ¢. Such & solution will serve as a
check on the more detailed numerical solution in the range over
which the asymptotic solution is valid. From the engineering
point of view, while the detailed numerical solution is exact, it
takes considerable computer time. So it is advantageous to have
a simpler closed form solution to the problem and know over what
range of the relevant parameters, the simpler solution yvields
practically valid results. Such an asymptotic solution has been
developed by Garrison for a hemisphere (c = 1.0). The details are
given in Garrison and Seetharama Rao (1971}, So only the assump~
tions and the final results are given here.

For a » 0, the boundary-value problem simplifies somewhat and
the free surface behaves as a rigid plane boundary. If in addi-
tion, the relative depth, h = h/a, is large, the free surface
boundary condition may he neglected and the problem reduces to
that of unsteady motion of a hemisphere in a semi-infinite fluid.
The velocity potential for this case is well-known from potential
flow theory. The pressure coefficient is obtained from the

velocity potential as
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N {x,y,z;t) = EEE%"EK [ cosh[a(h+y)] cos ax cos ot
+ {cosh[a(hty)] sin ax + %5} sin ot ] . (8.1)

Hence p(x,v,2), fx and fy are determined as

_ 1 2 2

p(x,7,2) = ES;E—;E-[cosh [ath+y)] cos™ ax

+ {coshla(hty)] sin ax + gﬁ}z] 1/2 (8.2)

_ Ta .
fx " cosh ah (8.3)
and
y > . .
a” cosh ah

Note that m, = 0 for a hemisphere. We can expect the above ex~

pressions to be valid for small a. Note that in the 1imi; as
a~->n0, fx tends to ma and fy to m,

An equivalent form of (8.3) may be obtaimed by assuming the
horizontal force to be the sum of two components: (i) the buoyancy
force due to the pressure gradient, and (ii) the added mass force.
1f ¥ is the displaced volume of the object, the result is

. - v a(l+Cm)

X ‘gg cosh ah * (8.5)

Since for a sphere in an infinite fluid the added mass coefficient
c is 0.5, for a hemisphere the expression for fx given in (8.5)

reduces to that in (8.3).
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Experiments for a Hemisphere

Some experimental results on the horizontal and vertical force
coefficients for a hemisphere, obtained at Texas A&M University,
are alsc presented in this dissertation for a comparison with the
diffraction theory. Details of the experiments are given by
Garrison and Snider (1970). So only a brief description will be
given here.

The experiments were conducted in a 2 ft wide by 3 ft deep by
125 ft long wave channel. A 7 in. 0.D. plastic hemispherical
model was suspended vertically by fine wires from sﬁall canti-
lever heams equipped with strain gages. The model was suspended
with a clearance of approximately 1/16 in. off the channel floor
so that it was supported only by the beams. The pressure inside
the model fluctuated because the model was off the channel floor.
Therefore the internal pressure of the model was recorded, by usting
a pressure transducer, simultaneously with the strain gage read-
ings for the wvertical force and the latter were corrected suitably
to account for the varying internal pressure. Horizontal forces
on the model were also measured by strain gages. The wave height
wvas measured by a resistance type wave gage.

Because the experiments were conducted in a "two-dimensional"
wave tank, they were restricted to large relative depths (h = 2,3

and 4) and small values of the relative size parameter (a<l.0).
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9. DISCUSSION OF RESULTS
Accuracy of Numerical Results and Effect of Grid Size

As previously indicated, the numerical results presented in
this dissertation were obtained with the grid size parameter N set
equal to 5. Since the accuracy obviously depends on the grid size,
the question naturally arises as to wh;t constitutes a proper grid
size. BSome ideas on this guestion have been given by previous
investigators such as Kim (1965), Garrison (1969), etc. As the
parameter a increases, the fineness of the grid size must be in-
creased in order to obtain the same degree of accuracy in the final
results. This is because some of the terms of the kernel, 3G/dn,
of the integral equation and the Green's function, G, oscillate in
ry with a wave length preportional to 2n/a. Thus in order for the

numerical integrations to he accurate, the subdivisions AB=Ay=s

must be kept small in comparison to 2n/a., That is-

il 21
<< .
2N a
Therefore for each grid size parameter N there is a value of a above
which the numerical results become inaccurate, Increasing the grid
size merely increases this value of a. However this process cannot

be continued indefinitely. The numerical scheme eventually breaks

down.
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Obviously the computer time and the cost of computatioa in-
crease with N, 8o, in order to check the effect of grid size, the
parameter N was changed to N = 4 and N = 6, respectively and
numerical results were obtained in a few cases over a range of a,
keeping h and ¢ constant, A comparigon of the final results is
shown in Table 1, Using the results from the finest grid as the
standard, the percentage deviations from it in the other two cases
are also shown.

The comparison shows that for values of a up to 3.39, all but
one of the results obtained with the coarser grid of N = 5 are
within 1% of those given by the grid of N = 6. The exception is
the vertical force coefficient, fy, which deviates less than 3.5%
for a = 3,39, Even the results obtained with the coarsest grid of
N = 4 are within 2.5%, for values of a up to 2.29, In general the
vertical force coefficient fy is more sensitive to grid size varia-
tion than the herizontal force coefficient or moment coefficient.
This is natural since some of the errors tend to cancel out in the
case of fx and ms whereas they all add up for fy' The compariscn
shown in Table 1 is for the relative depth, h = 1.25. Tn general
we may expect the effect of grid size variation to decrease as the
relative depth h increases, since diffraction effects become
smaller, 1In view of the preceding it may be concluded that the
results obtained in this dissertation with a grid size of N = 5

are of accuracy approximately comparable to those obtained with a



Table 1. Effect of Grid Size on Accuracy of Results
e =0.75 h = 1.25
a N f § £ 6§ m_ 8
X X v v z m
0.34] 6 |0.73809 | -1.5451] 2,95345 [ ~3.1396 | 0.16546 | -1.5451
5 10.73802 { -1.5451} 2.96902 { -3.1395 | 0.16627| -1.5451
~0.01%* 0.53% 0.49%
4 10.73780 | -1.5450 | 2.99799 { -3.1391 { 0.16776 | -1.5450
-0.04% 1.51% 1.39%
0.60 6 11.08270 | -1.5016 | 2,56686 | -3.1273 [ 0.24747| -1.5016
5 }1.08260 [ ~1.5016 | 2.58108 | -3,1266 | 0.24862| ~-1.5016
-0.01% 0.55% 0.467%
411.08222 | -1.5015 | 2.60708 | -3.1254 { 0.25070| -1.5015
-0.047% 1.57%7 | 1.31%
1,07]) 6 11.12268 | -1.4367 | 1.72583 | -3.0527 { 0.27072| -1.4367
511.12265 | ~1.4367 | 1.73548 | -3.,0505 } 0.27176 | -1.4367
0% 0.56% 0.38%
4 11.12244 § -1.4367 | 1.75319 | ~3.0466 | 0.27365 -1,4367
~0.02% 1.59% 1.08%
2.291 6 |0.39523 | ~1,4539 1 0.36547 | -2.9602 | 0.12442] -1.4539
5 10.39546 | ~1.,4544 | 0.36847 | -2,9569 | 0.12453] -1.4544
0.06% 0.82% 0.09%
4 10.39564 | ~1.45571 0.37373 | -2.9497 | 0.12461| -1.4557
0.107% 2.26% 0.15%
3.39] 6 [0.10050 } -1.5028 | 0.09031{ -3.0488 | 0.04579| -1.5028
5 10.10079 | -1.5035) 0.09325 | -3,0457 | 0.04577| -1.5035
0.29% 3.26% -0.04%
4 10.10128 ] -1.5060 { 0.09839 | -3,0378 | 0.04561{ -1.5060
0.78% 8.95% -0.39%
4,52 6 10,01768 ~1.5401{ 0.02088 } -3.1011| 0.01382{ ~1.5401
570.01796 | -1.5410} 0.02352 ] -3.0983 | 0.01383] -1.5410
1.58% 12.64%Z 0.07%
*Results for N = 6 are taken as the standard in computing the

percentage deviations.

90
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finer grid size of N = 6 for values of a upto 3.39. Even the coarse

grid of N = 4 appears to furnish results that are of the same order
of accuracy, for values of a upte 2,29, which might suffice for
engineering purposes. Finally, it is noted that Kim (1965), using
a similar numerical procedure, obtained quite accurate results for
an ellipsoid for values of a upto 4, with a grid size of N = 6,

The majority of the numerical results presented in this
dissertation were obtained on the IBM 360/65 computer system of
Texas A&M University. The total computer time required for cne
run (i,e., for given values of h, ¢ and a) for the diffraction
problem for the grid size of N = 5 increased as the relative size
a decreased. This is because of the numerical procedure used in
computing the infinite integrals. It was also observed that the
computer time varied depending on the relative depth h, being
greater for smaller values of h. The time was of the order of
3 to 6 minutes for a = 3.39 and 8 te 20 minutes for a = 0.19.

The computations were in general performed setting a = 0.19,
0.34, 0.60, 1.07, 1.91 and 3.39. The reason for the choice was
that the points were logarithmically spaced, Additional points
were added as necessary in the ranges where the results varied
rapidly. The data extended over the range of a values up to 4 and
in some cases even up to higher a, which is the range of practical
engineering interest. Four different geometries were considered.

These included the hemisphere (c = 1.0), two oblate spheroids
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(c = 0.5 and 0.75) and one prolate spheroid (c = 2,0). Because
of limitations on available computer time, the hemisphere was
tested over a wide range of h, from 1.25 to 4. Results were
obtained for the oblate spheroids for h = 1, 1.25 and 1.5 only,
and for the prolate spheroid for h = 2.5, 3 and 4 only. These

cover the range of practical interest,
Haskind's Relations and Energy Check

As previcusly indicated, Important checks on the numerical
technique and the final results can be made by using Haskind's
relations and the energy check which are developed in Appendix C.
The former verifies the solution for the diffraction problem and
the latter the solution for the radiation problem itself. These
checks were applied over a range of values of a, for given condi-
tions of ¢ and h. The results are shown in Tables 2 and 3,
respectively,

The comparison in Table 2 shows that the results obtained
directly from the numerical solution of the diffraction problem do
not differ by more than 0.5% in most cases from those obtained
indirectly from the solution of the radiation problem, by using
Haskind's relations. The only exceptions are the results correspond-
ing to fy for large a. These may be explained in terms of what
was noted earlier about fy' The general agreement is gratifying,

since the diffraction and radiation problems are sclved separately,
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and the accuracy of the numerical results in general is expected to
be no better than-+ 1%.

Table 3 shows that for the radiation problem the damping coef-
ficients obtained directly from the near field solution do not
differ by more than 0.5%7 from those obtained from the far field
solution by using the energy check. The only exception is the
damping coefficient N22 (for heave) for a = 2,29, This 1s in
keeping with the trends observed previously for fy' The comparison
of Table 3 is especially encouraging and provides confidence in
the numerical scheme used, since the far field sclution was
obtained by using an asymptotic form of the Green's function and

not that used for the near field.
Pressure Distribution

For design purposes, it is important to know the pressure
distribution on the body for varicus phase angles of the incident
wave. The computer program gives the pressure amplitude coefficient
p and the phase shift GP at various nodal points. With these data,
the instantaneous pressure distribution over the body can be easily
calculated corresponding to any instant of time during the wave
cycle.

Since the body is three-dimensiconal, there is no convenient
way of representing the values of p and GP obtained from the

program. Even presentation of the data in the form of tables takes
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considerable space. Therefore it was decided to give here only a
sampling of the pressure data and indicate briefly the trends.

As part of the computer program, the instantaneocus pressure
coefficients, N'(x,y,z;t), were calculated at the nodal points
corresponding to the instants of maximum horizontal force and
maximum vertical force, respectively. Using this informationm,
contours of equal values of II'(x,y,z;t) were plotted, showing the
body in plan view, Such contours are shown in figures 8~11 for the
case of a hemisphere (c = 1.0) for h = 1.5, The first two figures
correspond teo the condition of maximum horizontal force and the
next two to the cendition of maximum vertical force, The radial
straight lines and the circles represent ellipsoidal polar co-
ordinates, as shown in figure 8, the former corresponding to
azimuth angles o and the latter to vertical angles ¢. Note that
the x-axis represents the direction of advance of the incident wave.

Before going into the details of the results obtained from
diffraction theory for the case of maximum horizontal force, it is
interesting to consider the effect of the ircident wave alone,
disregarding scatter, since it is quite instructive. The maximum
horizontal force due to the incident wave occurs when the hori-
zontal pérticle acceleration in the x~direction is maximum at the
center of the object, i.e., when vt = -w/2 according to the
notation of {2.5), Corresponding to this condition, the crest

portion of the wave is overhead of that half of the object for
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Figure 9. Contours of pressure ~oefficient at instan?
of maximum horizental force for
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which x < 0, and the trough portion is overhead of the other half
for which x > 0, Therefore the pressure distribution is asymmetric
about the z-axis. However, from linear wave theory, the magnitudes
of the pressures are symmetric. The results of diffraction theory,
as presented in figures 8 and 9, are considered next. These
figures correspond to a = 1,07 and 2.2?, respectively. The
pressure distribution is asymmetric about the z-axis, as expected.
While the magnitudes of the pressures are roughly symmetric about
the z-axis for a = 1.07, this is howéver not the situaticn for
a = 2.29., The reason could be the greater diffraction effects
encountered in the latter case. The two pressure distributions
look different partly because, compared to the diameter of the
hemisphere, the length of the incident wave is shorter in the
latter case,

The condition of maximum vertical force is taken up next. If
the incident wave alone were considered, then the vertical force
is maXimum when the trough portion of the incident wave is directly
above the object, such that the pressures on the surface of the
object are generally negative and symmetric about the z-~axis.
Considering now the results of diffraction theory, as presented
in figures 10 and 11, and noting that they correspond to different
values of a, it is observed that the pressures are indeed almost
symmetric about the z-axis and in general negative in both cases.

The maximum negative pressure .ccurs at the highest point oo the
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surface of the object, Again, some of the differences between
figures 10 and 11 arise because, relative to the diameter of the
hemisphere, the wave length is shorter in the latter case.

The numerical results from diffraction theory for the hori-
zontal and vertical force coefficilents and the moment coefficient
are presented next in figures 12-29, For a hemisphere, the
asymptotic solution and the results of the experiments described
in Section 8 are also shown for comparison. For a given h, the
results obtained for different values of c are presented in the
same figure. In all the figures, solid lines represent diffrac-
tion theory, broken lines the asymptotic scolution for a hemisphere

and circles experimental data for a hemisphere.
Horizontal Force Coefficient, fx

The results for the horizontal force coefficient are presented
in figures 12-18. The figures correspond to the cases h = 1.0,
1.25, 1.5, 2.0, 2.5, 3.0 and 4.0, respectively. The results of the
asymptotic solution presented in these figures are obtained from
(8.5), bw assuming therein a value of Cm = 0,5, which corresponds
to the case of infinite relative depth h. ©Note that for the
assumed value of Cm equation (8.5) reduces to (8.3).

We consider the results from diffraction theory first. In
general the curves for all values of c follow the same trend.

They increase with a at first, reach a maximum and then decrcase
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rapidly with a, They all exhibit the same asymptotic behaviour for
very small a and for large a. They appear to follow a straight
line variation for small a, the straight lines hawving approximately
the same slope. The general trends observed may be explained

as follows. For a hemisphere it was noted in Section 8 that for
small a, fX v wa, a2 function represented by a straight line on a
log-log plot. As for the behaviour at large a, note that if a were
increased, keeping bther parameters constant, this means the wave-
length is decreasing relative teo the liquid depth and the size

of the object. Obviously, under such conditions the effect of the
wave at the free surface decreases at the bottom where the cbject
is located and so does fx until they both vanish for a > .

For a given h, the curves for larger relative heights, ¢, are
above those for smaller values of e, This is to be expected sincey
for a given a, the spheroid with a larger value of c has more
vertical projected area to offer and, other parameters being
equal, is subjected to a greater horizontal force.

It may be noted from the figures that in general fx increases
as the relative depth h decreases., This is as expected because
the free surface is closer to the object for smaller h and there-
fore the dynamic pressures are greater.

We now compare the asymptotic solution (8.5) with the results
from diffraction theory for a hemisphere. In general the two sets

of curves follow the same trends. Moreover, they coincide over the
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entire range of a considered, for h = 3 and 4. They are quite
close even for h = 2, This is-very encouraging. The difference
between the two solutions increases as the relative depth h de-
creases, being the maximum for h = 1,25, This is expected since
the asymptotic solution assumes Cm = (0.5 which corresponds to
infinite relative depth.

We note that in the case of the smaller h, for small values of
a, the results of equation (8.5) are generally below the results of
diffraction theory. In such cases the agreement between the
agsymptotic solution and diffraction theory can be improved by
suitably increasing the value of the added mass coefficient, Cm'
For example, in figure 13, the results of (8.5) can be made to
agree with diffraction theory for values of a up to approximately
0.7, by increasing the value of Cm used in the eguation to 0.7.
There is a sound basis for this suggestion. For small values of
a, the free surface behaves like a rigid plane boundary. For
small h, since this boundary is relatively close to the body, the
added mass coefficient, according to potential flow theory, is
greater than if the boundary were absent or at an infinite distance.

In figures 13 and 14, for large values of a, the results of
the asymptotic solution are higher than those from diffraction
theory. The difference increases with a and is quite large. This

is to be expected since the asymptotic seolution is valid only for
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small values of a, Thus in this range of a, the diffraction effects
neglected in the ﬁsymptotic solution become significant,

A comparison of the experimental results for a hemisphere with
the asymptotic solutien and diffraction theory in figures 15, 17
and 18 shows good agreement in general. The agreement improves

with the relative depth, as one would naturally expect.

Vertical Force Coefficient, fy

The numerical results for the vertical forece coefficient as
well as the asymptotic solution (8.4) and the experimental results
for a hemisphere are presented in figures 19-25, These figures
correspond to relative depths ranging from 1.0 to 4.0, as before.

We consider the results of diffraction theory first. In
general the curves for all c tend to m for a =+ 0. This is indeed
the trend predicted by the asymptotic solution (8.4) for ¢ = 1.
The value of 1 represents the effect of the hydrostatic pressures
due to the presence of the wave crest or trough of the incident
wave alone., As a increases, fy decreases first graaually and later
rapidly. This trend is again predicted by (8.4) for a hemisphere,
as evidenced by the figures.

In general, for the same relative depth h, the vertical force
coefficient increases with the relative height c. Also, the
difference between the curves for two different values of ¢ in-

creases in most cases with the relative size a. This may be
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explained as follows., The major portion of the wertical force comes
from the pressures near the top of the half sphercid. 1In the case
of a spheroid with a larger relative height, the points near the

top are closer to the free surface and therefore experience greater
dynamic pressures. Hence the total vertical force on a spheroid
with a larger relative height is greater than that having a small
value of ¢, even though the twe have the same horizontal projected
area.

It may be noted from the figures that the vertical force
coefficient generally increases as the relative depth h decreases.
As in the case of fx’ this may be explained in terms of the
proximity of the free surface.

We next compare the asymptotic solution (8.4) with diffractien
theary for a hemisphere. As in the case of fx’ the two coincide
over the whole range of a, for h = 3 and 4. As h is reduced, they
begin to diverge, the difference being greatest for h = 1.25,

This is to be expected gince the asymptotic solution is valid only
for large values of h. In general the asymptotic solutionr gives
results that are lower than those from diffraction theory for small
values of a, and higher than those from diffraction theory for
large values of a. Even for the smaller relative depths, the
agreement is quite good for small values of a up to approximately

a = 1,0, This is unlike the case for fx' It may be explained by

the fact that there is no added mass coefficient in (B8.4).
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In the case of small h, for large values of a, the asymptotic
solution for fy differs from diffraction theory by an order of
magnitude sometimes, considering that the scales of the plots are
logarithmic. In general if figures 13-~15 for the horizontal force
coefficient are compared with the corresponding figures 20-22
for the vertical force coefficient in the range of large a, it is
observed that the difference between the asymptotic solution and
the exact theory is larger for the vertical force coefficient.
This may be explained by the fact that the major portion of the
horizontal force arises due to pressures at the bottom of the
hemisphere, whereas the pressures at the top of the hemisphere
contribute most of the vertical force. Since the pressures at the
top are more strongly influenced by free surface effects, the
vertical force coefficient shows more diffraction effects, Thus
diffraction effects which are neglected in the asymptotic solution
become very important in the case of fy for large values of a,
when the relative depth is small.

A comparison of the experimental results for a hemisphere with
the asymptotic solution and diffraction theory in figures 22, 24
and 25 shows that the agreement is not as good as for fx' The
reason 1s not known, However it is noted that unlike the hori-
zontal force, the vertical force was measured in the experiments

by using the readings of the pressure transducer as well as the
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strain gages. It is therefore believed that this more complicated

arrangement led to greater experimental errors in the case of fy'
Moment Coefficient, m, .

The results for the moment coefficient obtained from diffrac-
tion theory are shown in figures 26-29, These correspond to
relative depths of h = 1.0, 1.25, 1.5, 2.5, 3.0 and 4.0. We note
that the moment coefficients for ¢ = 2.0 for the relative depths
of h = 2.5, 3,0 and 4.0 are all plotted on the same figure, namely
figure 29. As previously indicated, the moment coefficient is
zero for a hemisphere (c = 1.0).

In general my follows the same trend with variation of a, as
fx did. Thus it increases at first, reaches a peak and then
decreases fairly rapidly. This is not surprising since the hori-
zontal force and the moment about the z'-axis have their maximum
values simultaneously, and are both the result of the same pressure
distribution on the object. Note also that, for the same ¢, the
peak of the m_, curve moves to the left as the relative depth h is
increased. The same trend was observed for fx'

If we consider the effect of variation of e, for a given h, it
is apparent from the figures that, in the range ¢ < 1.0, the
moment coefficient decreases as ¢ increases until m is zero for

¢ = 1.0, On the other hand, in the range ¢ > 1.0, the moment
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coefficient increases with c¢. Such a peculiar trend results partly,

if not wholly, due te a factor |1 =~ c2 in the expression for m oy
The figures show that the moment coefficient decreases as the

relative depth increases. This is again in keeping with the trend

ohserved for fX and results for the same reasons.
Phase Shifts, 6_, 8 and &
x v m

We now consider the phase shifts of the horizontal and verti-~
cal forces and the moment, obtained from diffraction theory.
These results are presented in figures 30-33. The figures show
the results for c¢ = 0.5, 0.75, 1.0 and 2.0, respectively. For
a given ¢, the results for various relative depths are shown in
the same figure.

It must be noted that in the general case of a spheroid, the
phase shift for the horizontal force, Gx, is exactly identical
to that for the moment, 6m

For a + 3, the phase shifts 6x and Gm tend to the limit -n/2
and the phase shift 6y to the limit -w, which values may be predicted
by considering the incident wave alone. This means that the hori-
zontal force and the moment lag the incident wave ut the origin by
T/2, and are in phase with the horizontal particle acceleration due
to the wave. Similarly the vertical force lags the inecident wave
at the ordigin by 7 and its maximum value occurs when the wave trough

is directly above the z'-axis.
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In general the magnitudes of the phase shifts decrease as a
increases, up to a point. Thereafter they inerease with a, but not
indefinitely, They may be expected to fluctuate with a in the
range of higher values of a,

The figures show that for a given spheroid, the phase shifts
for large relative depths agree closely with the values of -7/2 and
-7 throughout the range of a considered., Thus in the case of a
hemisphere, the curves for Gx and 6y are almost horizontal straight
lines for h = 3, The results for h = 4 were not presented for
this case since they could not be distinguished from the values of
-1/2 and -r, 1In general as the relative depth decreases, the devia-
tion of the phase shifts from the asymptotic values increases. Tt
_can be seen that it is quite large for h = 1.0 corresponding to
¢ =0.75, and for h = 1.25 corresponding to ¢ = 1.0. These
deviations can be attributed to diffraction effects, and naturally
increase as the relative depth h is decreased.

If the phase shift curves for different relative heights, c,
are compared for the same h, it is observed that the results for
smaller values of c show less diffraction effects. This is to be
expected since, for lesser ¢ values, the spheroids are more deeply

submerged and therefore less influenced by the free surface.
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10. CONCLUSIONS

In this dissertation the diffraction problem which Involves
the action of small amplitude surface gravity waves on a rigid
submerged object in finite depth of water was formulated by using
the Green's functien approach. Simultaneously, the radiation
problem of a submerged object oscillating in otherwise still water
was also formulated in order to check the solution for the diffrac-
tion problem, The detailed theory and numerical scheme were
worked out for a semiellipsoid. Finally, in order to reduce the
computation time, numerical results were obtained only for the case
of a half spheroid, which was circular in plan,

The numerical results presented in this dissertation were
checked in different ways for their wvalidity and accuracy. These
checks included the use of Haskind's relations for the diffraction
problem, the energy check for the radiation problem and comparison,
in the case of a hemisphere, with results from an asymptotic solu-
tion, valid for large relative depths and small relative sizes of
object. For a hemisphere, comparisons were also made with experi—
mental data obtained in a "two-dimensional wave cliannel, All of
these checks and comparisons were successful and therefore it

'appearS, on the basis of the limited evidence available, that the

present method yields accurate results.



133

On the basis of the dimensionless results presented in Section ¢

and the discussion that followed, the following conclusions appear

justified for a half spheroid:

Horizontal Force Coefficient, fx

1.

Vertical

The horizontal force coefficient increases with the relative
size, a, at first, reaches a peak and later decreases
rapldly as a increases.

It increases with the relative height of the spheroid; c.

It increases as the relative depth of water, h, is decreased,
The asymptotic solution (8.5) coincides with diffraction
theory over the entire range of a tested for large relative
depths. Even in the case of smaller relative dépths, the
agreement can be improved for small relative sizes, a, by
increasing the added mass coefficient, Cm, suitably to
account for the effect due to the free surface.

The experimental results available for comparison agree

excellently with diffraction theory.
Feorce Coefficient, £

The wvertical force coefficient starts with a value of t
corresponding to zero relative size and decreases at
first slowly and later rapidly, as a is increased.

It increases with the relative height, ¢, of the spheroid.
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3. It increases with a decrease in the relative depth, h.

4. The asymptotic solution (8.4) for a hemisphere coincides
with diffraction theory over the entire range of the rela-
tive size tested, for large relative depths. Even for
small relative depths, the agreement is quite good for
small values of a up to about 1.0 approximately.

5. 1In general the vertical force coefficient shows more dif-

fraction effects than the horizontal force coefficient.
Moment Coefficient, m

1. The moment coefficient shows the same general trend of
variation with relative size, a, as the horizontal force
coaefficient.

2. It decreases with an increase in the relative height, c,
in the range ¢ < 1 and increases with ¢ in the range ¢ > 1.

3. It increases as the relative depth, h, is decreased.
Phage Shifts, §_, 6 and ¢
x' 'y m

1. The phase shifts for the horizontal force and the moment
are exactly equal.

2. For a > 0, the phase shifts 6x and Gm approach the asymp-
totic value of -n/2 and Gy approaches -m.

3. The magnitudes of the phase shifts generally decrease at

first as the relative size increases, and later increase

with a in the range of relative sizes tested.
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4, For large relative depths, the magnitudes of the phase
shifts are equal to the asymptotic values of w/2 amd 7
over the entire range of a, and as the relative depth is
decreased, they deviate more and more from these values,

5. TFor a given relative depth, h, the phase shifts deviate
more from the asymptotic values, as the relative height,
¢, 1s increased.

Finally it is noted that diffraction effects are quite signifi-
cant in the range of small relative depths of water and large rela-
tive sizes. In this range diffraction theory comes te its own and
becomes necessary. Since some of the engineering structures con-
templated for the near future will be both relatively large and
built in shallow waters, it is recommended that diffraction theory

be used in this range inspite of its greater complexity.

Recommendations for Future Research

1. Numerical results may be obtained for the general case of
a semiellipsoid, by using the theory presented up to
Section 7. In order to do this within reasonable computer
time, the form of the Green's function given in (3.19)
may be used only when the source (&,7,%) is close to the
point (x,y,z). For other cases, the series form of the
Green's function given in (C.26) in Appendix C may be
emploved, since it converges more rapidly and takes less

computer time.
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2. The work reported here may be extended to the two-
dimensional case of semielliptic cylinders resting in

finite depth of water and acted on by waves.
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APPENDIX A
DERIVATION OF THE FUNCTIONS, Ej(§,§,£)

In this section the functions Ej used in connection with the
kinematic comdition on the surface of the oscillating object are
derived.

Consider the linear motion of the rigid object in surge.
From (2.2-a), for j=l1, the velocity of the surface normal to

itself is given by

Kl + n = Re [-ic % n e 19t
1l "'x

1. (4.1)

He >

Application of the kinematic boundary condition on the sur-
face 5 gives
o¢

. me (-0 E n e 10ty (A.2)
m x

Substituting for ¢, from (2.3) and simplifying vields

1
avl =0
—= (X,¥,2) = - icd X_ n (A.3)
- 1 x
an
or

e °
hl(x,y,z) = - jo X n_ on s . (A.4)
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The functions Ez and HS can be derived similarly.

Congider next the angular motion of the object in roll. From

(2.2-b), for j=4, the velocity of the surface is given by

i

o e—ict)]

° x (15 + 350+ k020

i' [Re(-ion

Z e—iﬁt)] [-3'z' +&k's'] . (A.5)

[Re(-1a8

The velocity of the surface normal to itself is hence given b?

+
o -~iot

(1" 8 x 1) - o= [Re(—iue4 e )] [;'nz—é'ny] . (A.6)

4

Noting that y' = y+h and z' = z, and applving the kinematic
boundary condition on S, we have
3d

B - [Re(-108
an

o e—iot
4

) {(y+h) n, - z ny}] . A.7)

Substituting for ®4 from (2.3) and simplifying gives

av
T—(};a;sz) = - 1062 [(§+E) nZ - ; ny] (A-B)
in
or
B, (x,¥,2) = - icez [(748) n_ - Z ny] ) (A.9)

The functions ES and E6 are similarly obtained.
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APPENDIX B
EFFECT OF THE SINGULARITY

In this appendix, it is shown that the extra term —fj(x,y,z)/Z
in (3.26) arises at a point (x,y,z) on the surface because of the
singularity located there.

In view of the represemtation (3.17), at any point (x,y,2)

on the surface 8

Ju,
E]"(x,y,z) = %{{[ %ﬂ—ffs fj(g,n,c) G(x,¥,23E,N,7) dS]. (B.1)

However as the point {(&,n,g) approaches (x,y,z}, the normal deriva-
tive of the Green's function becomes singular because of the 1/R
term so that the region of the surface § surrounding the point
(x,v,z) must be treated in a special way. Therefore, for carry-
ing out the surface integration in (B.1) the surface 5 is divided
into two parts. One of these is a small area I, which is bounded
by the intersection of 5 and the surface of an imaginary circular
cylinder of radius r,, the cylinder's axis being normal to S at
(x,¥,z). The area g is shown in figure 34. The second part is
given by the remainder of the surface §. Therefore (B.1) may

be rewritten as

n

au,
a—r-;l(x,y,Z) =

£~

)
T‘fj; fj(g;na;)“é;' G(X,YsZ;E,H,C) dS
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1 3
+[f_'|T f-]-s_z fj(E,T'I,C) EG(XQY)Z)‘E’“;C) ds . (B.?_)

Writing G in the form given in (3.24) and noting that
£(f,n,z) is a well-behaved function, we may take the limiting condi-

tion as %, or equivalently r_ , tends to zero to chtain

0

a‘l.l. f.(XsY)z) 3 1
—l(x,y,2) = lim. —beev — (%) ds
an 50 4m T an 'R

f.{x,y,z) 3
+ 1lim. '_J_Z_'—'—“ a_ G*(X,Y,Z;Esmﬁ) ds
Z+O m E 11}

. 1 oG
+ lim. Z?ff f.(gynag) a—(X,Y.Z;E,ﬂ,C) das . (3-3)
50 s-r J n
Assuming the point (x,v,z) lies along the normal at an in-
finitesimal distance £ from the surface S as indicated in figure

34, and noting that for small r. the surface area ¥ may be con-

0

sidered to be plane, the first integral in (B.3) can be written as

f.(KQYsZ) 3 1
lim. —'1--——*'-‘—4“ fj; 5 (E) ds

2+0
~ ) f.(XsY;Z) 3 I‘O It
= lim. = € 22172 IF
r0+0 i € Jo (r™+c%)

e>0
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fo(x!Y’z)
LIS RV
2 ae f]
r0+0

e+0

f1 (x,¥,2) [ _E
= lim. -1
n 2 2. 2.1/2 ]
1, 0 (ro +¢e7)
e+0

f (stsz)
e - "i_"i____ . (B.4)

Further since 3G*/3n occurring in the second integral of (B.3) is
regular, that integral vanishes in the limit as & + 0, giving the

desired result

du £, (x,y,2)
'SEJ'(K,Y,Z) = "'"'i—z_"_'!' %’;f‘[g fj(E,ﬂ:E) %S(X,Y.HE,T\,C) ds .

(3.26)

Note that in (3.26) the surface integration is to be carried out
over the surface of the object with the singularity {(x,v,z)

excluded.



APPENDIX C
HASKIND'S RELATIONS AND ENERGY CHECK

Haskind's Relations

In the case of the diffraction problem, the dimensionless
wave force and moment components, Fi(t), on an object of arbitrary
shape are given by (4.18). Substituting for the functions

hi(x,y,z) from (2.25-D), equation (4.18) may be rewritten as

Ju, .
F]{(t) = RQ[ a ffs (u?'ﬂlo) an—l ds e—lUt ] » 1=1,2,3,...,6,

(C.1)

where u, are the radiation potentials.

We now eliminate the scatter potential u_, from (C.1l) by

7

applying Green's theorem to the functions u., and u, in the region

7

R, as shown in figure 3 in Section 3, Since both u, and u,

satisfy the Laplace equation in the region R,

9 3
(u —21-- u —23) dS =0 . {C.2)
S+8 _+5 +8 i 3n 7 on
f b e
Also since both uy and u, satisfy the free surface and bottom

boundary conditions, and the radiation condition at infinity, it
can be shown as in Section 3 that the contributions te the surface
integral in (C.2) from the surfaces Sf, Sb and 8_ vanish. Further
from (2.25-D) and {(&4.4)



146

—-'-=—""l_19- on S. : _ (C.3

Hence equation (C.2) yields the result

au.
ffs u, 5 = [[ v -—dS (C.4)

which may he rewritten as

Bu |
f[s (u+u) ™= [f (0Bn _uia__) das . {C.5)

We next replace the surface integral on the right hand side
of (C.5) by an integral on S_, by applying Green's theorem to
u, and u, in the region R. Since both Uy and u, satisfy the

Laplace equation and the free surface and bottom boundary condi-

tions,

[l eomtum
S+S 0 o i Bn

Hence

Bui u Buo
,[L (b T~ ¥y 3 95 7 ff ‘oan Y0 8 (D

Since by convention n is the direction of the normal to a
surface drawn into the fluid, 3/8n = -3/3r on S_. Moreover,

using the radiation condition (2.25-E) for ug, We can show that
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oo

du 17
3 " lauy -5 onm 5 . (C.8)

Since x = r cos 6, 1t can be shown from the expression for U, given

in (4.4) that

u

0 _ .
e ia uo cos 0 . (C.9)
Therefore
du
ff u, an - w3 ....._) ds = ff o [{a{l-cos B)
1 .
- E;J ds . (C.10)

Substituting for u, and u, on the right hand side of (C.10)

by A1) coshZahiy)
O3 7Y o %) as = - 2
Sm n y=-h cosh ah

r~1/2 e1ar(l+cos 9) [%;__ ia(l-cos )]

r d6 dy

fzn A (@) % [ - tar(i-cos ©)
8=0

eiar cos8 a5 . (c.11)



148

lar cos 6

Since v and e is a fluctuating quantity,

2
fﬂ Ai(e) -1/2 dar cos ©
—_—r e
g

-0 2 da = 0 on Sm . (C.12)

We next rewrite the remaining part of the original integral as

2m )
-j A (9) tar/? (1-cos 8) 13T €05 8 44
< =0

1/2 Jar 2 -{ar{l-cos ©) o
= - dar e A _(8) (1-cos 0) e 4 .

=0 1

Since ar »>> 1, the solution to the integral on the right hand
side of (C.13) may be obtained by the method of stationary phase

(refer, for example, Stoker (1957}, Sec. 6.5 and 6.8). Thus

2n - -
A (8) (l-cos 0) e lar(l-cos 6) as
a=0 1

ar-«x

2 2 —-i/4
- (ﬁ.)l/ { e M/ [4,(8) (l-cos 8)] e-!—~0

T
i(z - 2an) (4, (8) (1-cos €)] | }
6=0

+ e

m
- 2(%)1/2 16 - 2 a0 A (M), (C.14)

Hence, after some simplification, we can show that
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3u 3u
(u i 0 o 2m 172 1
I'[S‘m OBn _ui an)ds_i(a) 2

cosh™ ah

sinh 2ah in/4

[ 74 + h] e

Ai(ﬂ) . (C.15)

From (C.1), (C.5), (C.7) and {(C.15), simplifying, we have

w

1(G - ot) Ai(n)] . (C.16)

i(Zﬂa)I/Z [sinh Zah

2a +hl e

Fi(t) = Ra[ -

2
cosh ah
Taking the modulus on both sides gives the desired result

(Zna)l/Z

sinh 2ah
5 |
cosh ah

2a

£ = + hl |Ai(v)| , 1=1,2,3,...,6 . (C.17)
Equation (C.17) really represents six different equations, corres-
ponding to the different values of the index i. These equatious
are known as "Haskind's relations.” They relate the force and
moment components in the case of the diffraction problem to the
asymptotic velocity potentials for the corresponding radiation
preblem., They are very valuable because the asymptotic potentials
mentioned are much easier to obtain than the "near field" scatter

potential.

Energy Check

In the case of the radiation problem, the dimensional force {(or
moment) component, in the i-th direction, on the oscillating object

due to oscillations in the i-th mede mavy be obtained from (4.12) by
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setting j=i. The forces and moments exerted by the body on the
fluid are equal and opposite to these components so that the energy,
Ei’ transmitted by the body to the surrounding fluld over one
period is given by

T
Ei = - j:_o {(a or 1) Fii(t) Xi(t) at (C.18)

where Xi(t) = ii(t)/a for 1=1,2,3 and Xi(t) = Bi(t) for i=4,5,6.
In {€C.18) the coefficient a is to be used for a forece (i=1,2,3)
and the factor 1 for a moment (i=4,5,6). On substituting for

Fii(t) from (4.12), for the damping coefficient N.. from (4.15)

ii
and (4.16), and for Xi(t) from (2.2), and simplifying and carrying

out the integration, equation (C.18) may be rewritten as

2 -5 02
Ei = wpa  a Xi Nii 1=1,2,3,...,6 . (C.19)

1f we consider the fluid region R shown in figure 3, then by
conservation of energy, since the energy in the interior of the
region does not change, the above input of energy must be equal
to the energy flux across the surface S over one period due to
outgoing progressive waves.,

If ﬁz is the amplitude of the outgoing progressive waves at
S, due to the oscillation of the body in the i-th mode, then by
applying the dynamlic free surface boundary condition, we can relate

ﬁg to the asymptotic velocity potential u, - Thus
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ﬁ;(r,e) =a xg tanh (kh) alu (r,8,0)] . (C.20)
The energy, dEi’ transmitted across SOD per unit length of crest
over one period is given from linear wave theory as

_0 -
dE, = 2B T 1 +.__£§§Lai:]
. sinh 2kR

(c.21)

Therefore the total energy transmitted across S over one period is

given by
rg L 2kh 2m -02 -
E, = 1lim. 4 1+ — f ni r d8 . (C.22)
* = e sinh 2khJ J e=0

Substituting for ﬁ; from (C.20), and simplifying,

- - 4 4 2 -
E. = lim. 9%[ 1 4+ KR ] R
- sinh 2kh & 1
r—-H:n
21 2
-jp fui(r,e,0)| ds , 1i=1,2,3,...,6 . (C.23)

By comparing (C.19) and (C.23), a relation may be written for

the damping coefficients N, in terms of the asymptotic velocity

ii

potentials u, . Thus, after simplification, we have the relationship

. 1 2ah
Nii = lim. 3 tanh{ah) [1 + E;;E—E;E] Y

Yoo

2w 9
-l. |ui(r,6,0)| de , i=1,2,3,...,6 . (C.24)
8=0
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Substituting for ug from the radiation condition (2.25-E), we have

the alternate form

2m
_ tanh ah 2ah 2
Nii - 2 [+ sinh 2a ]_j;=0 lAi(e)[ de
i=1,2,3,...,6 . (C.25)

Equation (C.24) or (C.25) represents the energy check for the
radiation problem, It relates the damping coefficients Nii for- the
object (which are dependent on the near field characteristics of
the problem) to the asymptotic velocity potentials u, which are
dependent on the far field characteristics of the problem.

We note also a certain similarity in the relations (C.17)
and (C.25). Thus under certain conditions, it is possible to

relate f{ directly to Nii' Newman (1962) obtained such relations

for the case of a submerged spheroid.

Numerical Evaluation of Haskind's Relations and Energy Check for a

Half Spheroid

For a spheroid symmetric about the vertical axis, the only
cases of interest are those pertaining to i=1,2 and 6.

The left hand sides of (C.17) and (C.24) may be obtained from
the numerical solution to the corresponding diffraction and radia-
tion problems by numerical quadrature on the surface of the object,

using the relations given in Section 4. As for the right hand
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sides, these involve the asymptotic velocity potentials u These

i
potentials are computed numerically from (3.17). For this purpose
the distribution functions fi obtained from the numerical sclutien
of the radiation problem are used. As for the Green's function G,
since the form given in (3.19) is quite complicated, it is natural

to look for a simpler asymptotic form valid for large r An in-

1.
finite series form for the Green's function is given by John (1950)

and when made dimensionless in our variables appears as follows:

2n(y%-a?)
G(x,y,2z;E,n,5) = ————"= coshla(y+h)] coshl[a(n+h)]
a h=-v h+v
(ui+v2)
[Yo(arl) - i Jo(arl)] + 41 e
U WV hew
k=1 K
cos[uk(y+h)] cos[uk(n+h)] Ko(ukrl) {C.26)

where p, are the positive real roots of the equation

k

U tan(ph) + v =0 ,

and YO and KD are respectivelv the Bessel function, and modified

Bessel function, of the second kind of order zero.
For T > @, considerable simplification is possible in the

above expression for G and for y=0, the asymptotic form may be

written as



2wi(u2-a2)
G(x,0,2z;E,n,L) = - =5 — — cosh ah coshla(n+h) ]
o a " h=v htv
1
T
mary

Substituting for G from (C.27), we may write the asymptotic

potential u, as

2 2
L2 2 = h ah
ui(r,B,O) = - 1-(__)1f (v 2 ) ;os a
a h=v htvu

2 ‘ma

‘ n
(I.I; fi(E,n,c) cosh[a{n+h)] r1-1/2 el(arl - é) ds . (c.28)

Since r, is large, it may be replaced by r and taken outside

the intepral. Moreover, we note from figure 35 that for large r

T, = rpg cos (B-8) (C.29)

1

1/2

where Py = (Ez+c2) and 8 has the usual notation.

(X’Ysz)

/Sm

Figure 35. Plan view of the spheroid.

154



155

Therefore u, may be rewritten as

2 2 . 7.
-1/2 (v"=a”) cosh ah r—1/2 e:L(ar - 4)

azh-v2h+v

d[ijr fi(S,n,C) cosh a(n+h) e—iapl cos (8-6) das . {C.30)
3

ui(r,B,O) = = i(2wa)

Once fi(i,n,c) is known, ui(r,B,O) is computed for any (r,6)
by numerical integration over the surface, 8, of the object, using
also the symmetry of the distribution fumctiom.

As far as Haskind's relations {(C.17) are concerned, we make
use of the radiation condition (2,25-E) to obtain Ai(n), once

ui(r,ﬂ,O) is known. Thus

Ai(v) = ui(r,ﬂ,O) rl/2 e~iar . (c.31)
Hence
2 2
1 sinh 2ah (v -a™)
£! = { + h] |t j.j- £.(E,n,%)
i cosh ah 2a azh—v2h+v g 1
cosh a(n+h) e-iapl cos (8-m) dSl, i=1,2,6. (C.32)

The energy check (C.24) involves integration from & = 0 to 2w.
In this case, we observe that for a spheroid because of symmetry of
the asymptotic velocity potentials u, it is necessary to integrate
only over one quadrant and multiply the result by a factor of 4.

In the case of heave (i=2), it can be shown from physical
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considerations that ui(r,B,O) is independent of 6, So it is
necessary to evaluate the integrand for only one value of 0, say

6=, and multiply it by 2r to get the integral.






